
Francisco M. Couto

Data and Text Processing for
Health and Life Sciences

an example driven introductory guide
using shell scripting

July 12, 2023

Second Edition Draft

http://creativecommons.org/licenses/by/4.0/

Book website: http://labs.rd.ciencias.ulisboa.pt/book/

First Edition: https://link.springer.com/book/10.1007/978-3-030-13845-5

http://creativecommons.org/licenses/by/4.0/
http://labs.rd.ciencias.ulisboa.pt/book/
https://link.springer.com/book/10.1007/978-3-030-13845-5

Aos meus pais, Francisco de Oliveira Couto
e Maria Fernanda dos Santos Moreira
Couto.

Preface

During the last decades, I witnessed the growing importance of computer sci-
ence skills for career advancement in Health and Life Sciences. However, not
everyone has the skill, inclination, or time to learn computer programming.
The learning process is usually time-consuming and requires constant prac-
tice, since software frameworks and programming languages change sub-
stantially overtime. This is the main motivation for writing this book about
using shell scripting to address common Health and Life data and text pro-
cessing tasks. Shell scripting has the advantages of being: i) nowadays avail-
able in almost all personal computers; ii) almost immutable for more than
four decades; iii) relatively easy to learn as a sequence of independent com-
mands; iv) an incremental and direct way to solve many of the data problems
that Health and Life professionals face.

During the last decades, I had the pleasure to teach introductory computer
science classes to Health and Life Sciences undergraduates. I used program-
ming languages, such as Perl and Python, to address data and text processing
tasks, but I always felt to loose a substantial amount of the time teaching the
technicalities of these languages, which will probably change over time and
are uninteresting for the majority of the students that do not intend to pursue
advanced bioinformatics courses. Thus the purpose of this book is to motivate
and help specialists to automate common data and text processing tasks after
a short learning period. If they become interested (and I hope some do), the
book presents pointers to where they can acquire more advanced computer
science skills.

This book does not intend to be a comprehensive compendium of shell
scripting commands, but instead a introductory guide for Health and Life
specialists. This book introduces the commands as they are required to auto-
mate data and text processing tasks. The selected tasks have a strong focus
on text mining and biomedical ontologies given my research experience and
their growing relevance for Health and Life studies. Nevertheless, the same
type of solutions presented in the book are also applicable to many other
research fields and data sources.

Lisboa, January 2019 Francisco Couto

vii

Acknowledgments

I am grateful to all the people who helped and encouraged me along this
journey, specially to Rita Ferreira for all the insightful discussions about shell
scripting.

I am also grateful for all the suggestions and corrections given by my col-
league Prof. José Baptista Coelho, by Gökçe Aydos, and by my college stu-
dents: Alice Veiros, Ana Ferreira, Carlota Silva, Catarina Raimundo, Daniela
Matias, Inês Justo, João Andrade, João Leitão, João Pedro Pais, Konil Solanki,
Mariana Custódio, Marta Cunha, Manuel Fialho, Miguel Silva, Rafaela Mar-
ques, Raquel Chora and Sofia Morais.

This work was supported by FCT through funding of DeST: Deep Semantic
Tagger project, ref. PTDC/CCI-BIO/28685/2017 (http://dest.rd.cien
cias.ulisboa.pt/), and LASIGE Research Unit, ref. UID/CEC/00408/2019.

ix

http://dest.rd.ciencias.ulisboa.pt/
http://dest.rd.ciencias.ulisboa.pt/

Contents

1 Introduction . 1
1.1 Why this book? . 5
1.2 How this book helps Health and Life specialists? 6
1.3 What is in the book? . 10

2 Resources . 13
2.1 Biomedical Text . 13

2.1.1 What? . 13
2.1.2 Where? . 14
2.1.3 How? . 15

2.2 Semantics . 17
2.2.1 What? . 17
2.2.2 Where? . 20
2.2.3 How? . 21

2.3 Further Reading . 23

3 Data Retrieval . 25
3.1 Caffeine Example . 25
3.2 Unix shell . 33
3.3 Web Identifiers . 42
3.4 Data Retrieval . 44
3.5 Data Extraction . 47
3.6 Task Repetition . 50
3.7 XML Processing . 53
3.8 Text Retrieval . 60
3.9 Further Reading . 63

4 Text Processing . 65
4.1 Pattern Matching . 65
4.2 Regular Expressions . 69

4.2.1 Alternation . 70

xi

xii Contents

4.2.2 Multiple characters . 72
4.2.3 Quantifiers . 75

4.3 Position . 78
4.4 Tokenization . 82
4.5 Entity recognition . 86
4.6 Pattern File . 87
4.7 Relation Extraction . 88
4.8 Further Reading . 90

5 Semantic Processing . 91
5.1 Classes . 91
5.2 URIs and Labels . 99
5.3 Synonyms . 103
5.4 Parent Classes . 106
5.5 Ancestors . 109
5.6 My Lexicon . 114
5.7 Generic Lexicon . 117
5.8 Entity Linking . 125
5.9 Large lexicons . 131
5.10 Further Reading . 135
References . 137

Acronyms

ChEBI Chemical Entities of Biological Interest
CSV Comma-Separated Values
cURL Client Uniform Resource Locator
DAG Directed Acyclic Graph
DBMS Database Management System
DiShIn Semantic Similarity Measures using Disjunctive Shared Information
DO Disease Ontology
EBI European Bioinformatics Institute
GO Gene Ontology
HTTP Hypertext Transfer Protocol
HTTPS HTTP Secure
ICD International Classification of Diseases
MER Minimal Named-Entity Recognizer
MeSH Medical Subject Headings
NCBI National Center for Biotechnology Information
NER Named-Entity Recognition
OBO Open Biological and Biomedical Ontology
OWL Web Ontology Language
PMC PubMed Central
RDFS RDF Schema
SNOMED CT Systematized Nomenclature of Medicine - Clinical Terms
SQL Structured Query Language
TSV Tab-Separated Values
UMLS Unified Medical Language System
UniProt Universal Protein Resource
URI Uniform Resource Identifier
URL Uniform Resource Locator
XLS Microsoft Excel file format
XML Extensible Markup Language
XPath XML Path Language

xiii

Chapter 1
Introduction

Health and Life studies are well known for the huge amount of data they
produce, such as high-throughput sequencing projects [Stephens et al., 2015,
Hey et al., 2009]. However, the value of the data should not be measured by
its amount, but instead by the possibility and ability of researchers to retrieve
and process it [Leonelli, 2016]. Transparency, openness, and reproducibility
are key aspects to boost the discovery of novel insights into how living sys-
tems work [Nosek et al., 2015].

Biomedical data repositories

Fortunately, a significant portion of the biomedical data is already being col-
lected, integrated and distributed through central repositories, such as Euro-
pean Bioinformatics Institute (EBI) and National Center for Biotechnology
Information (NCBI) repositories [Cook et al., 2017, Coordinators, 2018].
Nonetheless, researchers cannot rely on available data as mere facts, they
may contain errors, can be outdated, and may require a context [Ferreira
et al., 2017]. Most facts are only valid in a specific biological setting and
should not be directly extrapolated to other cases. In addition, different re-
search communities have different needs and requirements, which change
over time [Tomczak et al., 2018].

Scientific text

Structured data is what most computer applications require as input, but
humans tend to prefer the flexibility of text to express their hypothesis, ideas,
opinions, conclusions [Barros and Couto, 2016]. This explains why scientific
text is still the preferential means to publish new discoveries and to describe
the data that support them [Holzinger et al., 2014, Lu, 2011]. Another reason

1

2 1 Introduction

Fig. 1.1 Chronological listing of the total number of citations in MEDLINE (Source: http
s://www.nlm.nih.gov/bsd/)

Fig. 1.2 Chronological listing of the total number of registered studies (clinical trials)
(Source: https://clinicaltrials.gov)

https://www.nlm.nih.gov/bsd/
https://www.nlm.nih.gov/bsd/
https://clinicaltrials.gov

1 Introduction 3

Fig. 1.3 Chronological listing of the total number of patents in force (Source: WIPO statis-
tics database http://www.wipo.int/ipstats/en/)

is the long-established scientific reward system based on the publication of
scientific articles [Rawat and Meena, 2014].

Amount of text

The main problem of analyzing biomedical text is the huge amount of text
being published every day [Hersh, 2008]. For example, 952,919 citations 1

were indexed in 2020 in MEDLINE, a bibliographic database of Health and
Life literature 2. If we read 10 articles per day, it will take us takes more
than 261 years to just read those articles. Figure 1.1 presents the number
of citations added to MEDLINE in the past decades, showing the increasing
large amount of biomedical text that researchers must deal with.

Moreover, scientific articles are not the only source of biomedical text, for
example clinical studies and patents also provide a large amount of text to
explore. They are also growing at a fast pace, as Figures 1.2 and 1.3 clearly
show [Aras et al., 2014, Jensen et al., 2012].

1 https://www.nlm.nih.gov/bsd/medline_pubmed_production_stats.html
2 https://www.nlm.nih.gov/bsd/medline.html

http://www.wipo.int/ipstats/en/
https://www.nlm.nih.gov/bsd/medline_pubmed_production_stats.html
https://www.nlm.nih.gov/bsd/medline.html

4 1 Introduction

Ambiguity and contextualization

Given the high flexibility and ambiguity of natural language, processing and
extracting information from texts is a painful and hard task, even to humans.
The problem is even more complex when dealing with scientific text, that re-
quires specialized expertise to understand it. The major problem with Health
and Life Sciences is the inconsistency of the nomenclature used for describ-
ing biomedical concepts and entities [Hunter and Cohen, 2006, Rebholz-
Schuhmann et al., 2005]. In biomedical text, we can often find different
terms referring to the same biological concept or entity (synonyms), or the
same term meaning different biological concepts or entities (homonyms). For
example, many times authors improve the readability of their publications by
using acronyms to mention entities, that may be clear for experts on the field
but ambiguous in another context.

The second problem is the complexity of the message. Almost everyone
can read and understand a newspaper story, but just a few can really un-
derstand a scientific article. Understanding the underlying message in such
articles normally requires years of training to create in our brain a semantic
model about the domain and to know how to interpret the highly special-
ized terminology specific to each domain. Finally, the multilingual aspect of
text is also a problem, since most clinical data are produced in the native
language [Campos et al., 2017].

Biomedical ontologies

To address the issue of ambiguity of natural language and contextualization
of the message, text processing techniques can explore current biomedical
ontologies [Robinson and Bauer, 2011]. These ontologies can work as vo-
cabularies to guide us in what to look for [Couto et al., 2006]. For example,
we can select an ontology that models a given domain and find out which
official names and synonyms are used to mention concepts in which we have
an interest [Spasic et al., 2005]. Ontologies may also be explored as seman-
tic models by providing semantic relationships between concepts [Lamurias
et al., 2017].

Programming skills

The success of biomedical studies relies on overcoming data and text pro-
cessing issues to take the most of all the information available in biomedical
data repositories. In most cases, biomedical data analysis is no longer pos-
sible using an in-house and limited dataset, we must be able to efficiently
process all this data and text. So, a common question that many Health and
Life specialists face is:

1.1 Why this book? 5

How can I deal with such huge amount of data and text without having
the necessary expertise, time and disposition to learn computer pro-
gramming?

This is the goal of this book, to provide a low-cost, long-lasting, feasible
and painless answer to this question.

1.1 Why this book?

State-of-the-art data and text processing tools are nowadays based on com-
plex and sophisticated technologies, and to understand them we need to have
special knowledge on programming, linguistics, machine learning or deep
learning [Holzinger and Jurisica, 2014, Ching et al., 2018, Angermueller
et al., 2016]. Explaining their technicalities or providing a comprehensive
list of them are not the purpose of this book. The tools implementing these
technologies tend to be impenetrable to the common Health and Life spe-
cialists and usually become outdated or even unavailable some time after
their publication or the financial support ends. Instead, this book will equip
the reader with a set of skills to process text with minimal dependencies to
existing tools and technologies. The idea is not to explain how to build the
most advanced tool, but how to create a resilient and versatile solution with
acceptable results.

In many cases, advanced tools may not be most efficient approach to tackle
a specific problem. It all depends on the complexity of problem, and the re-
sults we need to obtain. Like a good physician knows that the most efficient
treatment for a specific patient is not always the most advanced one, a good
data scientist knows that the most efficient tool to address a specific informa-
tion need is not always the most advanced one. Even without focusing on the
foundational basis of programming, linguistics or artificial intelligence, this
book provides the basic knowledge and right references to pursue a more
advanced solution if required.

Third-party solutions

Many manuscripts already present and discuss the most recent and efficient
text mining techniques and the available software solutions based on them
that users can use to process data and text [Cock et al., 2009, Gentleman
et al., 2004, Stajich et al., 2002]. These solutions include stand-alone appli-
cations, web applications, frameworks, packages, pipelines, etc. A common
problem with these solutions is their resiliency to deal with new user require-

6 1 Introduction

ments, to changes on how resources are being distributed, and to software
and hardware updates. Commercial solutions tend to be more resilient if they
have enough customers to support the adaptation process. But of course we
need the funding to buy the service. Moreover, we will be still dependent on
a third-party availability to address our requirements that are continuously
changing, which vary according to the size of the company and our relevance
as client.

Using open-source solutions may seem a great alternative since we do not
need to allocate funding to use the service and its maintenance is assured
by the community. However, many of these solutions derive from academic
projects that most of the times are highly active during the funding period
and then fade away to minimal updates. The focus of academic research is on
creating new and more efficient methods and publish them, the software is
normally just a means to demonstrate their breakthroughs. In many cases to
execute the legacy software is already a non-trivial task, and even harder is to
implement the required changes. Thus, frequently the most feasible solution
is to start from scratch.

Simple pipelines

If we are interested in learning sophisticated and advanced programming
skills, this is not the right book to read. This book aims at helping Health
and Life specialists to process data and text by describing a simple pipeline
that can be executed with minimal software dependencies. Instead of using
a fancy web front-end, we can still manually manipulate our data using the
spreadsheet application that we already are comfortable with, and at the
same time be able to automatize some of the repetitive tasks.

In summary, this book is directed mainly towards Health and Life spe-
cialists and students that need to know how to process biomedical data
and text, without being dependent on continuous financial support,
third-party applications, or advanced computer skills.

1.2 How this book helps Health and Life specialists?

So, if this book does not focus on learning programming skills, and neither
on the usage of any special package or software, how it will help specialists
processing biomedical text and data?

1.2 How this book helps Health and Life specialists? 7

Shell scripting

The solution proposed in this book has been available for more than four
decades [Ritchie, 1971], and it can now be used in almost every personal
computer [Haines, 2017]. Even with all the recent computational advances
such ancient technology is still the most efficient solution to many problems,
the same way that face masks used a century ago to deal with the 1918
Spanish flu pandemic are still being used today to deal with the COVID-19
pandemic.

The idea is to provide an example driven introduction to shell scripting 3

that addresses common challenges in biomedical text processing using a Unix
shell 4. Shells are software programs available in Unix operating systems
since 1971 5, but nowadays are available is most of our personal computers
using Linux, macOS or Windows operating systems.

But a shell script is still a computer algorithm, so how is it different
from learning another programming language?

It is different in the sense that most solutions are based on the usage of
single command line tools, that sometimes are combined as simple pipelines.
This book does not intend to create experts in shell scripting, by the con-
trary, the few scripts introduced are merely direct combinations of simple
command line tools individually explained before.

The main idea is to demonstrate the ability of a few command line tools
to automate many of the text and data processing tasks. The solutions are
presented in a way that comprehending them is like conducting a new labo-
ratory protocol i.e. testing and understanding its multiple procedural steps,
variables, and intermediate results.

Text files

All the data will be stored in text files, which command line tools are able to
efficiently process [Baker and Milligan, 2014]. Text files represent a simple
and universal medium of storing our data. They do not require any special
encoding and can be opened and interpreted by using any text editor appli-
cation. Normally, text files without any kind of formatting are stored using
a txt extension. However, text files can contain data using a specific format,
such as:

3 https://en.wikipedia.org/wiki/Shell_script
4 https://en.wikipedia.org/wiki/Unix_shell
5 https://www.in-ulm.de/~mascheck/bourne/#origins

https://en.wikipedia.org/wiki/Shell_script
https://en.wikipedia.org/wiki/Unix_shell
https://www.in-ulm.de/~mascheck/bourne/#origins

8 1 Introduction

CSV : Comma-Separated Values 6;
TSV : Tab-Separated Values 7;
XML : eXtensible Markup Language 8.

Fig. 1.4 Spreadsheet example

All the above formats can be open (import), edited and saved (export)
by any text editor application. and common spreadsheet applications 9, such
as LibreOffice Calc or Microsoft Excel 10. For example, we can create a new
data file using LibreOffice Calc, like the one in Figure 1.4. Then we select
the option to save it as CSV, TSV, XML (Microsoft 2003), and XLS (Microsoft
2003) formats. We can try to open all these files in our favorite text editor.

When opening the CSV file, the application will show the following con-
tents:

A,C
G,T

Each line represents a row of the spreadsheet, and column values are sepa-
rated by commas.

When opening the TSV file, the application will show the following con-
tents:

A C
G T

The only difference is that instead of a comma it is now used a tab character
to separate column values.

When opening the XML file, the application will show the following con-
tents:

...
<Table ss:StyleID="ta1">
<Column ss:Span="1" ss:Width="64.01"/>

6 https://en.wikipedia.org/wiki/Comma-separated_values
7 https://en.wikipedia.org/wiki/Tab-separated_values
8 https://en.wikipedia.org/wiki/XML
9 https://en.wikipedia.org/wiki/Spreadsheet
10 To save in TSV format using the LibreOffice Calc, we may have to choose CSV format
and then select as field delimiter the tab character

https://en.wikipedia.org/wiki/Comma-separated_values
https://en.wikipedia.org/wiki/Tab-separated_values
https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/Spreadsheet

1.2 How this book helps Health and Life specialists? 9

<Row ss:Height="12.81"><Cell><Data ss:Type="String">A</
Data></Cell><Cell><Data ss:Type="String">C</Data></
Cell></Row>

<Row ss:Height="12.81"><Cell><Data ss:Type="String">G</
Data></Cell><Cell><Data ss:Type="String">T</Data></
Cell></Row>

</Table>
...

Now the data is more complex to find and understand, but with a little more
effort we can check that we have a table with two rows, each one with two
cells.

When opening the XLS file, we will get a lot of strange characters and it
is humanly impossible to understand what data it is storing. This happens
because XLS is not a text file is a proprietary format 11, which organizes data
using an exclusive encoding scheme, so its interpretation and manipulation
could only be done using a specific software application.

Comma-separated values is a data format so old as shell scripting, in 1972
it was already supported by an IBM product 12. Using CSV or TSV enables us
to manually manipulate the data using our favorite spreadsheet application,
and at the same time use command line tools to automate some of the tasks.

Relational databases

If there is a need to use more advanced data storage techniques, such as
using a relational database 13, we may still be able to use shell scripting if
we can import and export our data to a text format. For example, we can
open a relational database, execute Structured Query Language (SQL) com-
mands 14, and import and export the data to CSV using the command line
tool sqlite3 15.

Besides CSV and shell scripting being almost the same as they were four
decades ago, they are still available everywhere and are able to solve most
of our data and text processing daily problems. So, these tools are expected
to continue to be used for many more decades to come. As a bonus, we
will look like a true professional typing command line instructions in a black
background window! ⌣̈

11 https://en.wikipedia.org/wiki/Proprietary_format
12 http://bitsavers.trailing-edge.com/pdf/ibm/370/fortran/GC28-
6884-0_IBM_FORTRAN_Program_Products_for_OS_and_CMS_General_Inform
ation_Jul72.pdf
13 https://en.wikipedia.org/wiki/Relational_database
14 https://en.wikipedia.org/wiki/SQL
15 https://www.sqlite.org/cli.html

https://en.wikipedia.org/wiki/Proprietary_format
http://bitsavers.trailing-edge.com/pdf/ibm/370/fortran/GC28-6884-0_IBM_FORTRAN_Program_Products_for_OS_and_CMS_General_Information_Jul72.pdf
http://bitsavers.trailing-edge.com/pdf/ibm/370/fortran/GC28-6884-0_IBM_FORTRAN_Program_Products_for_OS_and_CMS_General_Information_Jul72.pdf
http://bitsavers.trailing-edge.com/pdf/ibm/370/fortran/GC28-6884-0_IBM_FORTRAN_Program_Products_for_OS_and_CMS_General_Information_Jul72.pdf
https://en.wikipedia.org/wiki/Relational_database
https://en.wikipedia.org/wiki/SQL
https://www.sqlite.org/cli.html

10 1 Introduction

1.3 What is in the book?

First, the Chapter 2 presents a brief overview of some of the most prominent
resources of biomedical data, text, and semantics. The chapter discusses what
type of information they distribute, where we can find them, and how we will
be able to automatically explore them. Most of the examples in the book use
the resources provided by the European Bioinformatics Institute (EBI) and
use their services to automatically retrieve the data and text. Nevertheless,
after understanding the command line tools, it will not be hard to adapt them
to the formats used by other service provider, such as the National Center for
Biotechnology Information (NCBI). In terms of semantics, the examples will
use two ontologies, one about human diseases and the other about chemi-
cal entities of biological interest. Most ontologies share the same structure
and syntax, so adapting the solutions to other domains are expected to be
painless.

As an example, the Chapter 3 will describe the manual steps that Health
and Life specialists may have to perform to find and retrieve biomedical text
about caffeine using publicly available resources. Afterwards, these manual
steps will be automatized by using command line tools, including the auto-
matic download of data. The idea is to go step-by-step and introduce how
each command line tool can be used to automate each task.

Command line tools

The main command line tools that this book will introduce are the following:

• curl: a tool to download data and text from the web;
• grep: a tool to search our data and text;
• cut: a tool to filter sections of each data item;
• sed: a tool to edit our data and text;
• xargs: a tool to repeat the same step for multiple data items;
• xmllint: a tool to search in XML data files.

Other command line tools are also presented to perform minor data and
text manipulations, such as:

• cat: a tool to get the content of file;
• tr: a tool to replace one character by another;
• sort: a tool to sort multiple lines;
• head: a tool to select only the first lines.

Pipelines

A fundamental technique introduced in Chapter 3 is how to redirect the out-
put of a command line tool as input to another tool, or to a file. This enables

1.3 What is in the book? 11

the construction of pipelines of sequential invocations of command line tools.
Using a few commands integrated in a pipeline is really the maximum shell
scripting that this book will use. Scripts longer than that would cross the line
of not having to learn programming skills.

Chapter 4 is about extracting useful information from the text retrieved
previously. The example consists in finding references to malignant hyper-
thermia in these caffeine related texts, so we may be able to check any valid
relation.

Regular Expressions

A powerful pattern matching technique described in Chapter 4 is the usage
of regular expressions 16 in the grep command line tool to perform Named-
Entity Recognition (NER) 17. Regular expressions originated in 1951 [Kleene,
1951], so they are even older than shell scripting, but still popular and avail-
able in multiple software applications and programming languages [Forta,
2018]. A regular expression is a string that include special operators repre-
sented by special characters. For example, the regular expression A|C|G|T
will identify in a given string any of the four nucleobases adenine (A), cyto-
sine (C), guanine (G), or thymine (T).

Another technique introduced is tokenization. It addresses the challenge of
identifying the text boundaries, such as splitting a text into sentences. So, we
can keep only the sentences that may have something we want. Chapter 4
also describes how can we try to find two entities in the same sentence,
providing a simple solution to the relation extraction challenge 18.

Semantics

Instead of trying to recognize a limited list of entities, Chapter 5 explains how
can we use ontologies to construct large lexicons that include all the entities
of a given domain, e.g. humans diseases. The chapter also explains how the
semantics encoded in an ontology can be used to expand a search by adding
the ancestors and related classes of a given entity. Finally, a simple solution
to the Entity Linking 19 challenge is given, where each entity recognized is
mapped to a class in an ontology. A simple technique to solve the ambiguity
issue when the same label can be mapped to more than one class is also
briefly presented.

16 https://en.wikipedia.org/wiki/Regular_expression
17 https://en.wikipedia.org/wiki/Named-entity_recognition
18 https://en.wikipedia.org/wiki/Relationship_extraction
19 https://en.wikipedia.org/wiki/Entity_linking

https://en.wikipedia.org/wiki/Regular_expression
https://en.wikipedia.org/wiki/Named-entity_recognition
https://en.wikipedia.org/wiki/Relationship_extraction
https://en.wikipedia.org/wiki/Entity_linking

Chapter 2
Resources

The previous chapter presented the importance of text and semantic re-
sources for Health and Life studies. This chapter will describe what kind of
text and semantic resources are available, where they can be found, and how
they can be accessed and retrieved.

2.1 Biomedical Text

Text is still the preferential means of publishing novel knowledge in Health
and Life Sciences, and where we can expect to find all the information
about the supporting data. Text can be found and explored in multiple types
of sources, the main being scientific articles and patents [Krallinger et al.,
2017]. However, less formal texts are also relevant to explore, such as the
ones present nowadays in electronic health records [Blumenthal and Taven-
ner, 2010].

2.1.1 What?

In the biomedical domain, we can find text in different forms, such as:

Statement : a short piece of text, normally containing personal remarks or
an evidence about a biomedical phenomenon;

Abstract : a short summary of a larger scientific document;
Full-text : the entire text present in a scientific document including scat-

tered text such as figure labels and footnotes.

Statements contain more syntactic and semantic errors than abstracts, since
they normally are not peer-reviewed, but they are normally directly linked
to data providing useful details about it. The main advantage of using state-

13

14 2 Resources

ments or abstracts is the brief and succinct form on which the information is
expressed. In the case of abstracts, there was already an intellectual exercise
to present only the main facts and ideas. Nevertheless, a brief description
may be insufficient to draw a solid conclusion, that may require some im-
portant details not possible to summarize in a short piece of text [Schuemie
et al., 2004]. These details are normally presented in the form of a full-text
document, which contains a complete description of the results obtained. For
example, important details are sometimes only present in figure labels[Yeh
et al., 2003].

One major problem of full-text documents is their availability, since their
content may have restricted access. In addition, the structure of the full-text
and the format on which is available varies according to the journal in where
it was published. Having more information does not mean that all of it is
beneficial to find what we need. Some of the information may even induce
us in error. For example, the relevance of a fact reported in the Results Section
may be different if the fact was reported in the Related Work Section. Thus,
the usage of full-text may create several problems regarding the quality of
information extracted [Shah et al., 2003].

2.1.2 Where?

Access to biomedical literature is normally done using the internet through
PubMed 1, an information retrieval system released in 1996 that allows re-
searchers to search and find biomedical texts of relevance to their stud-
ies [Canese, 2006]. PubMed is developed and maintained by the National
Center for Biotechnology Information (NCBI), at the U.S. National Library
of Medicine (NLM), located at the National Institutes of Health (NIH). Cur-
rently, PubMed provides access to more than 28 million citations from MED-
LINE, a bibliographic database with references to a comprehensive list of aca-
demic journals in Health and Life Sciences 2. The references include multiple
metadata about the documents, such as: title, abstract, authors, journal, pub-
lication date. PubMed does not store the full-text documents, but it provides
links where we may find the full-text. More recently, biomedical references
are also accessible using the European Bioinformatics Institute (EBI) services,
such as Europe PMC 3, or the Universal Protein Resource (UniProt) with its
UniProt citations service 4.

1 https://www.nlm.nih.gov/bsd/pubmed.html
2 https://www.nlm.nih.gov/bsd/medline.html
3 http://europepmc.org/
4 https://www.uniprot.org/citations/

https://www.nlm.nih.gov/bsd/pubmed.html
https://www.nlm.nih.gov/bsd/medline.html
http://europepmc.org/
https://www.uniprot.org/citations/

2.1 Biomedical Text 15

Other generic alternative tools have been also gaining popularity for find-
ing scientific texts, such as Google Scholar 5, Google Patents 6, Research-
Gate 7 and Mendeley 8.

More than just text some tools also integrate semantic links. One of the
first search engines for biomedical literature to incorporate semantics was
GOPubMed 9, that categorized texts according to Gene Ontology terms found
in them [Doms and Schroeder, 2005]. These semantic resources will be de-
scribed in a following section. A more recent tool is PubTator 10 that provides
the text annotated with biological entities generated by state-of-the-art text-
mining approaches [Wei et al., 2013].

There is also a movement in the scientific community to produce Open
Access Publications, making full-texts freely available with unrestricted use.
One of the main free digital archives of free biomedical full-texts is PubMed
Central 11 (PMC), currently providing access to more than 5 million docu-
ments.

Other relevant source of biomedical texts is the electronic health records
stored in health institutions, but the texts they contain are normally directly
linked to patients and therefore their access is restricted due to ethical and
privacy issues. As example, the THYME corpus 12 includes more than one
thousand de-identified clinical notes from the Mayo Clinic, but is only avail-
able for text processing research under a data use agreement (DUA) with
Mayo Clinic [Styler IV et al., 2014].

From generic texts we can also sometimes find relevant biomedical infor-
mation. For example, some recent biomedical studies have been processing
the texts in social networks to identify new trends and insights about a dis-
ease, such as processing tweets to predict flu outbreaks [Aramaki et al., 2011]
.

2.1.3 How?

To automatically process text, we need programmatic access to it, this means
that from the previous repositories we can only use the ones that allow this
kind of access. These limitations are imposed because many biomedical doc-
uments have copyright restrictions hold by their publishers. And some restric-

5 http://scholar.google.com/
6 http://www.google.com/patents
7 https://www.researchgate.net/
8 https://www.mendeley.com/
9 https://gopubmed.org/
10 http://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/PubTator/
11 https://www.ncbi.nlm.nih.gov/pmc/
12 http://thyme.healthnlp.org/

http://scholar.google.com/
http://www.google.com/patents
https://www.researchgate.net/
https://www.mendeley.com/
https://gopubmed.org/
http://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/PubTator/
https://www.ncbi.nlm.nih.gov/pmc/
http://thyme.healthnlp.org/

16 2 Resources

tions may define that only manual access is granted, and no programmatic
access is allowed. These restrictions are normally detailed in the terms of
service of each repository. However, when browsing the repository if we face
a CAPTCHA 13 challenge to determine whether we are humans or not, prob-
ably means that some access restrictions are in place.

Fortunately, NCBI 14 and EBI 15 online services, such as PubMed, Eu-
rope PMC, or UniProt Citations, allow programmatic access [Li et al., 2015].
Both institutions provide Web APIs 16 that fully document how web ser-
vices can be programmatically invoked. Some resources can inclusively be
accessed using RESTful web services 17 that are characterized by a simple
uniform interface that make any Uniform Resource Locator (URL) almost
self-explanatory [Richardson and Ruby, 2008]. The same URL shown by our
web browser is the only thing we need to know to retrieve the data using a
command line tool.

For example, if we search for caffeine using the UniProt Citations service 18,
select the first two entries, and click on Preview, the browser will show infor-
mation about those two documents using a tabular format.

Citation Id Title Authors Publication date Journal
First page Last page Statistics

20520601 Association of the anxiogenic ...
29522901 The influence of CYP1A2 genotype ...

We can also click on Generate URL for API and check the URL to access
the information:

https://rest.uniprot.org/citations/stream?compressed=
true&fields=id%2Ctitle%2Cauthors%2Cpublication_date
%2Cjournal%2Cfirst_page%2Clast_page%2Cstatistics&
format=tsv&query=id%3A20520601%20OR%20id%3A29522901

We can check that the URL has three main components: the scheme
(https), the hostname (rest.uniprot.org), the service (citations)
and the data parameters. The scheme represents the type of web connec-
tion to get the data, and usually is one of these protocols: Hypertext Transfer
Protocol (HTTP) or HTTP Secure (HTTPS) 19. The hostname represents the
physical site where the service is available. The list of parameters depends
on the data available from the different services.

13 https://en.wikipedia.org/wiki/CAPTCHA
14 https://www.ncbi.nlm.nih.gov/home/develop/api/
15 https://www.ebi.ac.uk/seqdb/confluence/display/JDSAT/
16 https://en.wikipedia.org/wiki/Web_API
17 https://www.ebi.ac.uk/seqdb/confluence/pages/viewpage.action?p
ageId=68165098
18 https://www.uniprot.org/citations/
19 https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

https://en.wikipedia.org/wiki/CAPTCHA
https://www.ncbi.nlm.nih.gov/home/develop/api/
https://www.ebi.ac.uk/seqdb/confluence/display/JDSAT/
https://en.wikipedia.org/wiki/Web_API
https://www.ebi.ac.uk/seqdb/confluence/pages/viewpage.action?pageId=68165098
https://www.ebi.ac.uk/seqdb/confluence/pages/viewpage.action?pageId=68165098
https://www.uniprot.org/citations/
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

2.2 Semantics 17

We can change any value of the parameters (arguments) to get different
results. For example, we can replace the two PubMed identifiers by the fol-
lowing one 29029291:

https://rest.uniprot.org/citations/stream?compressed=
true&fields=id%2Ctitle%2Cauthors%2Cpublication_date
%2Cjournal%2Cfirst_page%2Clast_page%2Cstatistics&
format=tsv&query=id%3A29029291

With this link our browser will now download a file with the information
about this new document:

PubMed ID Title Authors/Groups Abstract/Summary
29029291 Nutrition Influences ...

The good news is that we can use this link with a command line tool
and automatize the retrieval of the data, including extracting the abstract to
process its text.

2.2 Semantics

Lack of use of standard nomenclatures across biological text makes text pro-
cessing a non-trivial task. Often, we can find different labels (synonyms,
acronyms) for the same biomedical entities, or, even more problematic, dif-
ferent entities sharing the same label (homonyms) [Rebholz-Schuhmann
et al., 2005]. Sense disambiguation to select the correct meaning of an ex-
pression in a given piece of text is therefore a crucial issue. For example, if
we find the disease acronym ATS in a text, we may have to figure out if it rep-
resenting the Andersen-Tawil syndrome 20 or the X-linked Alport syndrome 21.
Further in the book, we will address this issue by using ontologies and se-
mantic similarity between their classes [Couto and Lamurias, 2019].

2.2.1 What?

In 1993, [Gruber, 1993] proposed a short but comprehensive definition of
ontology as an:

an explicit specification of a conceptualization

In 1997 and 1998, [Borst and Borst, 1997] and [Studer et al., 1998] refined
this definition to:

20 http://purl.obolibrary.org/obo/DOID_0050434
21 http://purl.obolibrary.org/obo/DOID_0110034

http://purl.obolibrary.org/obo/DOID_0050434
http://purl.obolibrary.org/obo/DOID_0110034

18 2 Resources

a formal, explicit specification of a shared conceptualization

A conceptualization is an abstract view of the concepts and the relation-
ships of a given domain. A shared conceptualization means that a group of
individuals agree on that view, normally established by a common agreement
among the members of a community. The specification is a representation of
that conceptualization using a given language. The language needs to be for-
mal and explicit, so computers can deal with it.

Languages

The Web Ontology Language (OWL) 22 is nowadays becoming one of the
most common languages to specify biomedical ontologies [McGuinness et al.,
2004]. Another popular alternative is the Open Biomedical Ontology (OBO) 23

format developed by the OBO foundry. OBO established a set of principles to
ensure high quality, formal rigor and interoperability between other OBO on-
tologies [Smith et al., 2007]. One important principle is that OBO ontologies
need to be open and available without any constraint other than acknowl-
edging their origin.

Concepts are defined as OWL classes that may include multiple properties.
For text processing important properties include the labels that may be used
to mention that class. The labels may include the official name, acronyms, ex-
act synonyms, and even related terms. For example, a class defining the dis-
ease malignant hyperthermia may include as synonym anesthesia related hy-
perthermia. Two distinct classes may share the same label, such as Andersen-
Tawil syndrome and X-linked Alport syndrome that have ATS as an exact syn-
onym.

Formality

The representation of classes and the relationships may use different levels
of formality, such as controlled vocabularies, taxonomies, and thesaurus that
even may include logical axioms.

Controlled vocabularies are list of terms without specifying any relation
between them. Taxonomies are controlled vocabularies that include sub-
sumption relations, for example specifying that malignant hyperthermia is a
muscle tissue disease. This is-a or subclass relations are normally the backbone
of ontologies. We should note that some ontologies may include multiple in-
heritance, i.e. the same concept may be a specialization of two different con-
cepts. Therefore, many ontologies are organized as a directed acyclic graphs
(DAG) and not as hierarchical trees, as the one represented in Figure 2.1. A

22 https://en.wikipedia.org/wiki/Web_Ontology_Language
23 https://en.wikipedia.org/wiki/Open_Biomedical_Ontologies

https://en.wikipedia.org/wiki/Web_Ontology_Language
https://en.wikipedia.org/wiki/Open_Biomedical_Ontologies

2.2 Semantics 19

thesaurus includes other types of relations besides subsumption, for example
specifying that caffeine has role mutagen.

Fig. 2.1 A DAG representing a classification of metals with multiple inheritance, since
gold and silver are considered both precious and coinage metals (All the links represent
is-a relations)

Gold related documents

The importance of these relations can be easily understood by considering
the domain modeled by the ontology in Figure 2.1, and the need to find
texts related to gold. Assume a corpus with one distinct document mentioning
each metal, except for gold that no document mentions. So, which documents
should we read first?

The document mentioning silver is probably the most related since it
shares with gold two parents, precious and coinage. However, choosing be-
tween the documents mentioning platinum or palladium or the document
mentioning copper depends on our information need. This information can
be obtained by our previous searches or reads. For example, assuming that
our last searches included the word coinage, then document mentioning cop-
per is probably the second-most related. The importance of these semantic

20 2 Resources

resources is evidenced by the development of the knowledge graph 24 by
Google to enhance their search engine [Singhal, 2012].

2.2.2 Where?

Most of the biomedical ontologies are available through BioPortal 25. In April
of 2021, BioPortal provided access to 859 ontologies representing more than
10 million classes. BioPortal allows us to search for an ontology or a specific
class. For example, if we search for caffeine, we will be able to see the large
list of ontologies that define it. Each of these classes represent conceptualiza-
tions of caffeine in different domains and using alternative perspectives. To
improve interoperability some ontologies include class properties with a link
to similar classes in other ontologies. One of the main goals of the OBO ini-
tiative was precisely to tackle this somehow disorderly spread of definitions
for the same concepts. Each OBO ontology covers a clearly specified scope
that is clearly identified.

OBO ontologies

A major example of success of OBO ontologies is the Gene Ontology (GO)
that has been widely and consistently used to describe the molecular func-
tion, biological process and cellular component of gene-products, in a uni-
form way across different species [Ashburner et al., 2000]. Another OBO on-
tology is the Disease Ontology (DO) that provides human disease terms, phe-
notype characteristics and related medical vocabulary disease concepts [Schriml
et al., 2018]. Another OBO ontology is the Chemical Entities of Biological In-
terest (ChEBI) that provides a classification of molecular entities with biolog-
ical interest with a focus on small chemical compounds[Degtyarenko et al.,
2007].

Popular controlled vocabularies

Besides OBO ontologies, other popular controlled vocabularies also exist.
One of them is the International Classification of Diseases (ICD) 26, main-
tained by the World Health Organization (WHO). This vocabulary contains
a list of generic clinical terms mainly arranged and classified according to
anatomy or etiology. Another example is the Systematized Nomenclature of

24 https://en.wikipedia.org/wiki/Knowledge_Graph
25 http://bioportal.bioontology.org/
26 https://www.who.int/classifications/icd/en/

https://en.wikipedia.org/wiki/Knowledge_Graph
http://bioportal.bioontology.org/
https://www.who.int/classifications/icd/en/

2.2 Semantics 21

Medicine - Clinical Terms (SNOMED CT) 27, currently maintained and dis-
tributed by the International Health Terminology Standards Development
Organization (IHTSDO). The SNOMED CT is a highly comprehensive and
detailed set of clinical terms used in many biomedical systems. The Medical
Subject Headings (MeSH) 28 is a comprehensive controlled vocabulary main-
tained by the National Library of Medicine (NLM) for classifying biomedical
and health-related information and documents. Both MeSH and SNOMED
CT are included in the Metathesaurus of the Unified Medical Language Sys-
tem (UMLS) 29, maintained by the U.S National Library of Medicine. This is a
large resource that integrates most of the available biomedical vocabularies.
The 2015AB release covered more than three million concepts.

Another alternative to BioPortal is Ontobee 30, a repository of ontologies
used by most OBO ontologies, but it also includes many non-OBO ontologies.
In April 2021, Ontobee provided access to 231 ontologies [Ong et al., 2016]

Other alternatives outside the biomedical domain include the list of vocab-
ularies gathered by the W3C SWEO Linking Open Data community project 31,
and by the W3C Library Linked Data Incubator Group 32

2.2.3 How?

After finding the ontologies that cover our domain of interest in the previous
catalogs, a good idea is to find their home page and download the files from
there. This way, we will be sure that we get the most recent release in the
original format and select the subset of the ontology that really matter for our
work. For example, ChEBI provides three versions: LITE, CORE and FULL 33.
Since we are interested in using the ontology just for text processing, we are
probably not interested in chemical data and structures that is available in
CORE. Thus, LITE is probably the best solution, and it will be the one we
will use in this book. However, we may be missing synonyms that are only
included in the FULL version.

27 https://digital.nhs.uk/services/terminology-and-classification
s/snomed-ct
28 https://www.nlm.nih.gov/mesh/
29 https://www.nlm.nih.gov/research/umls/
30 http://www.ontobee.org/
31 http://www.w3.org/wiki/TaskForces/CommunityProjects/LinkingOpen
Data/CommonVocabularies
32 http://www.w3.org/2005/Incubator/lld/XGR-lld-vocabdataset-
20111025
33 https://www.ebi.ac.uk/chebi/downloadsForward.do

https://digital.nhs.uk/services/terminology-and-classifications/snomed-ct
https://digital.nhs.uk/services/terminology-and-classifications/snomed-ct
https://www.nlm.nih.gov/mesh/
https://www.nlm.nih.gov/research/umls/
http://www.ontobee.org/
http://www.w3.org/wiki/TaskForces/CommunityProjects/LinkingOpenData/CommonVocabularies
http://www.w3.org/wiki/TaskForces/CommunityProjects/LinkingOpenData/CommonVocabularies
http://www.w3.org/2005/Incubator/lld/XGR-lld-vocabdataset-20111025
http://www.w3.org/2005/Incubator/lld/XGR-lld-vocabdataset-20111025
https://www.ebi.ac.uk/chebi/downloadsForward.do

22 2 Resources

OWL

The OWL language is the prevailing language to represent ontologies, and
for that reason will be the format we will use in this book. OWL extends RDF
Schema (RDFS) with more complex statements using description logic. RDFS
is an extension of RDF with additional statements, such as class-subclass or
property-subproperty relationships. RDF is a data model that stores infor-
mation in statements represented as triples of the form subject, predicate
and object. Originally, W3C recommended RDF data to be encoded using Ex-
tensible Markup Language (XML) syntax, also named RDF/XML. XML is a
self-descriptive mark-up language composed of data elements.

For example, the following example represents an XML file specifying that
caffeine is a drug that may treat the condition of sleepiness, but without being
an official treatment:

<treatment category="non-official">
<drug>caffeine</drug>
<condition>sleepiness</condition>

</treatment>

The information is organized in an hierarchical structure of data elements.
treatment is the parent element of drug and condition. The character
< means that a new data element is being specified, and the characters </
means that a specification of data element will end. The treatment element
has a property named category with the value non-official. The drug
and condition elements have as values caffeine and sleepiness, re-
spectively. This is a very simple XML example, but large XML files are almost
unreadable by humans.

To address this issue other encoding languages for RDF are now being
used, such as N3 34 and Turtle 35. Nevertheless, most biomedical ontologies
are available in OWL using XML encoding.

URI

The Uniform Resource Identifier (URI) was defined as the standard global
identifier of classes in an ontology. For example, the class caffeine in ChEBI
is identified by the following URI :

http://purl.obolibrary.org/obo/CHEBI_27732

If a URI represents a link to a retrievable resource is considered a Uniform
Resource Locator, or URL. In other words, a URI is a URL if we open it in a
web browser and obtain a resource describing that class.

34 https://en.wikipedia.org/wiki/Notation3
35 https://en.wikipedia.org/wiki/Turtle_(syntax)

https://en.wikipedia.org/wiki/Notation3
https://en.wikipedia.org/wiki/Turtle_(syntax)

2.3 Further Reading 23

Sometimes, ontologies are also available as database dumps. These dumps
are normally SQL files that need to be fed to a DataBase Management Sys-
tem (DBMS) 36. If for any reason we must deal with these files, we can use
the simple command line tool named sqlite3. The tool has the option to
execute the SQL commands to import the data into a database (.read com-
mand), and to export the data into a CSV file (.mode command) [Allen and
Owens, 2011].

2.3 Further Reading

One important read if we need to know more about biomedical resources
is the Arthur Lesk’s book about bioinformatics [Lesk, 2014]. The book has
entire chapters dedicated to where data and text can be found, providing
a comprehensive overview of the type of biomedical information available,
nowadays .

A more pragmatic approach is to explore the vast number of manuals,
tutorials, seminars and courses provided by the EBI 37 and NCBI 38.

36 https://en.wikipedia.org/wiki/Database#Database_management_sys
tem
37 https://www.ebi.ac.uk/training
38 https://www.ncbi.nlm.nih.gov/home/learn/

https://en.wikipedia.org/wiki/Database#Database_management_system
https://en.wikipedia.org/wiki/Database#Database_management_system
https://www.ebi.ac.uk/training
https://www.ncbi.nlm.nih.gov/home/learn/

Chapter 3
Data Retrieval

This chapter starts by introducing an example of how we can retrieve text,
where every step is done manually. This chapter will describe step-by-step
how we can automatize each step of the example using shell script com-
mands, which will be introduced and explained as long as they are required.
The goal is to equip the reader with a basic set of skills to retrieve data from
any online database and follow the links to retrieve more information from
other sources, such as literature.

3.1 Caffeine Example

Fig. 3.1 Wikipedia page about caffeine

25

26 3 Data Retrieval

As our main example, let us consider that we need to retrieve more data
and literature about caffeine. If we really do not know anything about caffeine,
we may start by opening our favorite internet browser and then searching
caffeine in Wikipedia 1 to know what it really is (see Figure 3.1). From all
the information that is available we can check in the infobox that there are
multiple links to external sources. The infobox is normally a table added to
the top right-hand part of a web page with structured data about the entity
described on that page.

Fig. 3.2 Identifiers section of the Wikipedia page about caffeine

From the list of identifiers (see Figure 3.2), let us select the link to one
resource hosted by the European Bioinfomatics Institute (EBI), the link to
CHEBI:27732 2.

CHEBI represents the acronym of the resource Chemical Entities of Bi-
ological Interest (ChEBI) 3 and 27732 the identifier of the entry in ChEBI
describing caffeine (see Figure 3.3). ChEBI is a freely available database of
molecular entities with a focus on “small” chemical compounds. More than a
simple database, ChEBI also includes an ontology that classifies the entities
according to their structural and biological properties.

By analyzing the CHEBI:27732 web page we can check that ChEBI pro-
vides a comprehensive set of information about this chemical compound. But

1 https://en.wikipedia.org/wiki/Caffeine
2 https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:27732
3 http://www.ebi.ac.uk/chebi/

https://en.wikipedia.org/wiki/Caffeine
https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:27732
http://www.ebi.ac.uk/chebi/

3.1 Caffeine Example 27

Fig. 3.3 ChEBI entry describing caffeine

Fig. 3.4 External references related to caffeine

let us focus on the Automatic Xrefs tab 4. This tab provides a set of external
links to other resources describing entities somehow related to caffeine (see
Figure 3.4).

In the Protein Sequences section, we have 77 proteins (in September of
2018) related to caffeine. If we click on show all we will get the complete

4 http://www.ebi.ac.uk/chebi/displayAutoXrefs.do?chebiId=CHEBI:
27732

http://www.ebi.ac.uk/chebi/displayAutoXrefs.do?chebiId=CHEBI:27732
http://www.ebi.ac.uk/chebi/displayAutoXrefs.do?chebiId=CHEBI:27732

28 3 Data Retrieval

Fig. 3.5 Proteins related to caffeine

list 5 (see Figure 3.5). These links are to another resource hosted by the EBI,
the UniProt, a database of protein sequences and annotation data.

The list includes the identifiers of each protein with a direct link to re-
spective entry in UniProt, the name of the protein and some topics about the
description of the protein. For example, DISRUPTION PHENOTYPE means
some effects caused by the disruption of the gene coding for the protein are
known 6.

We should note that at bottom-right of the page there are Export options
that enable us to download the full list of protein references in a single file.
These options include:

CSV : Comma Separated Values, the open format file that enable us to store
data as a single table format (columns and rows).

Excel : a proprietary format designed to store and access the data using the
software Microsoft Excel.

XML : eXtensible Markup Language, the open format file that enable us to
store data using a hierarchy of markup tags.

We start by downloading the CSV, Excel and XML files. We can now open
the files and check its contents in a regular text editor software 7 installed
in our computer, such as notepad (Windows), TextEdit (macOS) or gedit
(Linux).

5 http://www.ebi.ac.uk/chebi/viewDbAutoXrefs.do?dbName=UniProt&ch
ebiId=27732
6 https://web.expasy.org/docs/userman.html#CC_line
7 https://en.wikipedia.org/wiki/Text_editor

http://www.ebi.ac.uk/chebi/viewDbAutoXrefs.do?dbName=UniProt&chebiId=27732
http://www.ebi.ac.uk/chebi/viewDbAutoXrefs.do?dbName=UniProt&chebiId=27732
https://web.expasy.org/docs/userman.html#CC_line
https://en.wikipedia.org/wiki/Text_editor

3.1 Caffeine Example 29

The first lines of the chebi_27732_xrefs_UniProt.csv file should look like
this:

A2AGL3,Ryanodine receptor 3,CC - MISCELLANEOUS
A4GE69,7-methylxanthosine synthase 1,CC - FUNCTION
...

The first lines of the chebi_27732_xrefs_UniProt.xls file should look like
this:

"Identifiers" "Name" "Line
Types"

"A2AGL3" "Ryanodine receptor 3" "CC -
MISCELLANEOUS"

"A4GE69" "7-methylxanthosine synthase 1" "CC -
FUNCTION"

...

As we can see, this is not the proprietary format XLS but instead a TSV for-
mat. Thus, the file can still be open directly on Microsoft Excel.

The first lines of the chebi_27732_xrefs_UniProt.xml file should look like
this:

<?xml version="1.0"?>
<table>
<row>
<column>A2AGL3</column>
<column>Ryanodine receptor 3</column>
<column>CC - MISCELLANEOUS</column>
</row>
<row>
<column>A4GE69</column>
<column>7-methylxanthosine synthase 1</column>
<column>CC - FUNCTION</column>
</row>
...

We should note that all the files contain the same data they only use a
different format.

If for any reason, we are not able to download the previous files from
UniProt, we can get them from the book file archive 8.

In the following sections we will use these files to automatize this process,
but for now let us continue our manual exercise using the internet browser.
Let us select the Ryanodine receptor 1 with the identifier P21817 and click on
the link 9 (see Figure 3.6). We can now see that UniProt is much more than

8 http://labs.rd.ciencias.ulisboa.pt/book/
9 https://www.uniprot.org/uniprotkb/P21817

http://labs.rd.ciencias.ulisboa.pt/book/
https://www.uniprot.org/uniprotkb/P21817

30 3 Data Retrieval

Fig. 3.6 UniProt entry describing the Ryanodine receptor 1

just a sequence database. The sequence is just a tiny fraction of all the infor-
mation describing the protein. All this information can also be downloaded
as a single file by clicking on Download and on XML. Then, save the result as
a XML file to our computer.

Again, we can use our text editor to open the downloaded file named
P21817.xml, which first lines should look like this:

<?xml version='1.0' encoding='UTF-8'?>
<uniprot xmlns="http://uniprot.org/uniprot" ...
<entry ... dataset="Swiss-Prot" created="1991-05-01"

...
<accession>P21817</accession>
...

We can check that this entry represents a Homo sapiens (Human) protein,
so if we are interested only in Human Proteins, we will have to filter them. For
example, the entry E9PZQ0 10 in the ChEBI list also represents a Ryanodine
receptor 1 protein but for the Mus musculus (Mouse).

Going back to the browser in the top side of the UniProt entry we have
a link to publications 11. If we click on it, we will see a list of publications
somehow related to the protein (see Figure 3.7).

Let us assume that we are interested in finding phenotypic information,
the first title that may attract our attention is: Polymorphisms and deduced
amino acid substitutions in the coding sequence of the ryanodine receptor

10 https://www.uniprot.org/uniprotkb/E9PZQ0
11 https://www.uniprot.org/uniprotkb/P21817/publications

https://www.uniprot.org/uniprotkb/E9PZQ0
https://www.uniprot.org/uniprotkb/P21817/publications

3.1 Caffeine Example 31

Fig. 3.7 Publications related to Ryanodine receptor 1

Fig. 3.8 Abstract of the publication entitled Polymorphisms and deduced amino acid sub-
stitutions in the coding sequence of the ryanodine receptor (RYR1) gene in individuals with
malignant hyperthermia

32 3 Data Retrieval

(RYR1) gene in individuals with malignant hyperthermia. To know more about
the publication, we can use the UniProt citations service by clicking on the
Abstract link 12 (see Figure 3.8).

Fig. 3.9 Diseases recognized by the online tool MER in an abstract

To check if the abstract mentions any disease we can use an online text
mining tool, for example the Minimal Named-Entity Recognizer (MER) 13.
We can copy and paste the abstract of the publication into MER and select
DO - Human Disease Ontology as lexicon (see Figure 3.9).

We will see that MER detects three mentions of malignant hyperthermia,
giving us another link 14 about the disease found (see Figure 3.10).

Thus, in summary, we started from a generic definition of caffeine and
ended with an abstract about hyperthermia by following the links in different
databases. Of course, this does not mean that by taking caffeine we will get
hyperthermia, or that we will treat hyperthermia by taking caffeine (maybe
as a cold drink ⌣̈ 15). However, this relation has a context, a protein and a
publication, that need to be further analyzed before drawing any conclusions.

We should note that we only analyzed one protein and one publication, we
now need to repeat all the steps to all the proteins and to all the publications
related to each protein. And this could even be more complicated if we were
interested in other central nervous system stimulants, for example by looking

12 https://www.uniprot.org/citations/1354642
13 http://labs.rd.ciencias.ulisboa.pt/mer/
14 http://purl.obolibrary.org/obo/DOID_8545
15 https://en.wikipedia.org/wiki/Hyperthermia#Treatment

https://www.uniprot.org/citations/1354642
http://labs.rd.ciencias.ulisboa.pt/mer/
http://purl.obolibrary.org/obo/DOID_8545
https://en.wikipedia.org/wiki/Hyperthermia#Treatment

3.2 Unix shell 33

Fig. 3.10 Disease ontology entry for the class malignant hyperthermia

in the ChEBI ontology 16. This is of course the motivation to automatize the
process, since it is not humanly feasible to deal with such large amount of
data, that keeps evolving every day.

However, if the goal was to find a relation between caffeine and hyperther-
mia, we could simply have searched these two terms in PubMed. We did not
do that because some relations are not explicitly mention in the text, thus we
have to navigate through database links. The second reason is because we
needed an example using different resources and multiple entries to explain
how we can automate most of these steps using shell scripting. The automa-
tion of the example will introduce a comprehensive set of techniques and
commands, which with some adaptation Health and Life specialists can use
to address many of their text and data processing challenges.

3.2 Unix shell

A shell is a software program that interprets and executes command lines
given by the user in consecutive lines of text. A shell script is a list of such
command lines. The command line usually starts by invoking a command
line tool. This manuscript will introduce a few command line tools, which

16 https://www.ebi.ac.uk/chebi/chebiOntology.do?chebiId=35337

https://www.ebi.ac.uk/chebi/chebiOntology.do?chebiId=35337

34 3 Data Retrieval

will allow us to automatize the previous example. Unix shell was developed
to manage Unix-like operating systems, but due to their usefulness nowa-
days they are available is most personal computers using Linux, macOS or
Windows operating systems. There are many types of Unix shells with mi-
nor differences between them (e.g. sh, ksh, csh, and tcsh), but the most
widely available is the Bourne-Again shell (bash 17). The examples in this
manuscript were tested using bash.

Fig. 3.11 Screenshot of a Terminal application (Source: https://en.wikipedia.org
/wiki/Unix)

So, the first step is to open a shell in our personal computer using a ter-
minal application (see Figure 3.11). If we are using Linux or macOS then
this is usually not new for us, since most probably we have a terminal ap-
plication already installed, that opens a shell for us. In case we are using a
Microsoft Windows operating system, then we have several options to con-
sider. If we are using Windows 10, then we can install a Windows Subsystem
for Linux 18 or just install a third-party application, such as MobaXterm 19.
No matter which terminal application we end up using, the shell will always
have a common look: a text window with a cursor blinking waiting for our
first command line. We should note that most terminal applications allow the
usage of the up and down cursor keys to select, edit, and execute previous
commands, and the usage of the tab key to complete the name of a command
or a file.

17 https://en.wikipedia.org/wiki/Bash_(Unix_shell)
18 https://docs.microsoft.com/en-us/windows/wsl/about
19 https://mobaxterm.mobatek.net/

https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/Bash_(Unix_shell)
https://docs.microsoft.com/en-us/windows/wsl/about
https://mobaxterm.mobatek.net/

3.2 Unix shell 35

Current directory

As our first command line, we can type:

$ pwd

After hitting enter, the command will show the full path of the directory
(folder) of our computer in which the shell is working on. The dollar sign in
the left is only to indicate that this is a command to be executed directly in
the shell. A curved arrow can appear in the right each time a command does
not fit in the available width of a page, and has to be presented in multiple
lines

To understand a command line tool, such as pwd, we can type man fol-
lowed by the name of the tool. For example, we can type man pwd to learn
more about pwd (do not forget to hit enter, and press q to quit). We can also
learn more about man by typing man man. A shorter alternative to man, is to
add the --help option after any command tool. For example, we can type
pwd --help to have a more concise description of pwd.

As our second command line, we can type ls and hit enter. It will show
the list of files in the current directory. For example, we can type ls --
help to have a concise description of ls. Since we will work with files, that
we need to open with a text editor or a spreadsheet application 20, such as
LibreOffice Calc or Microsoft Excel, we should select a current directory that
we can easily open in our file explorer application. A good idea is to open
our favorite file explorer application, select a directory, and then check its
full path 21.

Windows directories

Notice that in Windows the full path to a directory each name is separated
by a backslash (\) while in a Unix shell is a forward slash (/). For example,
a Windows path to the Documents folder may look like:

C:\Users\MyUserName\Documents

If we are using the Windows Subsystem for Linux 22, the previous folder
must be accessed using the path:

/mnt/c/Users/MyUserName/Documents

If we are using MobaXterm 23, the following path should be used instead:

20 https://en.wikipedia.org/wiki/Spreadsheet
21 https://en.wikipedia.org/wiki/Path_(computing)
22 https://www.howtogeek.com/261383/how-to-access-your-ubuntu-
bash-files-in-windows-and-your-windows-system-drive-in-bash/
23 https://mobaxterm.mobatek.net/documentation.html

https://en.wikipedia.org/wiki/Spreadsheet
https://en.wikipedia.org/wiki/Path_(computing)
https://www.howtogeek.com/261383/how-to-access-your-ubuntu-bash-files-in-windows-and-your-windows-system-drive-in-bash/
https://www.howtogeek.com/261383/how-to-access-your-ubuntu-bash-files-in-windows-and-your-windows-system-drive-in-bash/
https://mobaxterm.mobatek.net/documentation.html

36 3 Data Retrieval

/drives/c/Users/MyUserName/Documents

Change directory

To change the directory, we can use another command line tool, the cd
(change directory) followed by the new path. In a Linux system we may

want to use the Documents directory. If the Documents directory is inside our
current directory (shown using ls), we only need to type:

$ cd Documents

Now we can type pwd to see what changed.
And if we want to return to the parent directory, we only need to use the

two dots ..:

$ cd ..

And if we want to return to the home directory, we only need to use the
tilde character (∼):

$ cd ∼

Again, we should type pwd to double check if we are in the directory we
really want.

In Windows we may need to use the full path, for example:

$ cd /mnt/c/Users/MyUserName/Documents

We should note that we need to enclose the path within single (or double)
quotes in case it contains spaces:

$ cd '/mnt/c/Users/MyUserName/Documents'

Later on, we will know more about the difference between using single or
double quotes. For now, we may assume that they are equivalent. To know
more about cd, we can type cd --help.

Useful key combinations

Every time the terminal is blocked by any reason, we can press both the
control (Ctrl) and C key at the same time 24. This usually cancels the current
tool being executed. For example, try using the cd command with only one
single quote:

$ cd '

24 https://en.wikipedia.org/wiki/Control

https://en.wikipedia.org/wiki/Control

3.2 Unix shell 37

This will block the terminal, because it is still waiting for a second single
quote that closes the argument. Now press Ctrl-c, and the command will be
aborted.

Now we can type again the previous command, but instead of pressing
Ctrl-c we may also press Ctrl-d 25. The combination Ctrl-d indicates the ter-
minal that it is the end of input. So, in this case, the cd command will not
be canceled, but instead it is executed without the second single quote and
therefore a syntax error will be shown on our display.

Other useful key combinations are the Ctrl-l that when pressed cleans the
terminal display, and the control-insert and shift-insert that when pressed
copy and paste the selected text, respectively.

Shell version

The following examples will probably work in any Unix shell, but if we want
to be certain that we are using bash we can type the following command,
and check if the output says bash.

$ ps -p $$

ps is a command line tool that shows information about active processes
running in our computer. The -p option selects a given process, and in this
case $$ represents the process running in our terminal application. In most
terminal applications bash is the default shell. If this is not our case, we may
need to type bash, hit enter and now we are using bash.

Now that we know how to use a shell, we can start writing and running a
very simple script that reverse the order of the lines in a text file.

Data file

We start by creating a file named myfile.txt using any text editor, and adding
the following lines:

line 1
line 2
line 3
line 4

We cannot forget to save it in our working directory, and check if it has the
proper filename extension.

25 https://en.wikipedia.org/wiki/End-of-Transmission_character

https://en.wikipedia.org/wiki/End-of-Transmission_character

38 3 Data Retrieval

File contents

To check if the file is really on our working directory, we can type:

$ cat myfile.txt

The contents of the file should appear in our terminal. cat is a simple
command line tool that receives a filename as argument and displays its con-
tents on the screen. We can type man cat or cat --help to know more
about this command line tool.

Reverse file contents

An alternative to cat tool is the tac tool. To try it, we only need to type:

$ tac myfile.txt

In macOS the tac tool may not be available, but we can replace it by tail
-r.

The contents of the file should also appear in our terminal, but now in the
reverse order. We can type man tac or tac --help to know more about
this command line tool.

My first script

Now we can create a script file named reversemyfile.sh by using the text editor,
and add the following lines:

1 tac $1

We cannot forget to save the file in our working directory. $1 represents
the first argument after the script filename when invoking it. Each script file
presented in this manuscript will include the line numbers in the left. This
will helps us not only to identify how many lines the script contains, but also
to distinguish a script file from the commands to be executed directly in the
shell.

Additionally, we could add the shebang 26 #!/bin/bash as the first line
of the script, which would specify that it should be executed using the Bash
shell. However, for simplicity we will not use any shebang in this book.

26 https://en.wikipedia.org/wiki/Shebang_(Unix)

https://en.wikipedia.org/wiki/Shebang_(Unix)

3.2 Unix shell 39

Line breaks

A Unix file represents a single line break by a line feed character, instead of
two characters (carriage return and line feed) used by Windows 27. So, if we
are using a text editor in Windows, we must be careful to use one that lets
us save it as Unix file, for example the open source Notepad++ 28. If we are
using a text editor in macOS we also need to be careful in saving it in text
format29.

In case we do not have such text editor, we can also remove the extra
carriage return by using the command line tool tr, that replaces and deletes
characters:

$ tr -d '\r' < reversemyfile.sh > reversemyfilenew.sh

The -d option of tr is used to remove a given character from the input, in
this case tr will delete all carriage returns (r). Many command line options
can be used in short form using a single dash (-), or in a long form using two
dashes (--). In this tool, using the --delete option is equivalent to the -d
option. Long forms are more self-explanatory, but they take longer to type
and occupy more space. We can type man tr or tr --help to know more
about this command line tool.

Redirection operator

The > character represents a redirection operator 30 that moves the results
being displayed at the standard output (our terminal) to a given file. The <
character represents a redirection operator that works on the opposite direc-
tion, i.e. opens a given file and uses it as the standard input.

We should note that cat received the filename as an input argument,
while tr can only receive the contents of the file through the standard input.
Instead of providing the filename as argument, the cat command can also
receive the contents of a file through the standard input, and produce the
same output:

$ cat < myfile.txt

The previous tr command used a new file for the standard output, be-
cause we cannot use the same file to read and write at the same time. To
keep the same filename, we have to move the new file by using the mv com-
mand:

27 https://en.wikipedia.org/wiki/Newline
28 https://notepad-plus-plus.org/
29 https://beebom.com/how-save-files-txt-format-textedit-mac/
30 https://www.gnu.org/software/bash/manual/html_node/Redirection
s.html

https://en.wikipedia.org/wiki/Newline
https://notepad-plus-plus.org/
https://beebom.com/how-save-files-txt-format-textedit-mac/
https://www.gnu.org/software/bash/manual/html_node/Redirections.html
https://www.gnu.org/software/bash/manual/html_node/Redirections.html

40 3 Data Retrieval

$ mv reversemyfilenew.sh reversemyfile.sh

We can type man mv or mv --help to know more about this command line
tool.

Installing tools

These last two commands could be replaced by the dos2unix tool:

$ dos2unix -n reversemyfile.sh

If not available, we have to install the dos2unix tool.
For example, in the Ubuntu Windows Subsystem we need to execute:

$ apt install dos2unix

The apt (Advanced Package Tool) command is used to install packages in
many Linux systems 31. Another popular alternative is the yum (Yellowdog
Updater, Modified) command 32.

In macOS we can install the The Missing Package Manager 33, and then
execute:

$ brew install dos2unix

To avoid fixing line breaks each time we update our file when using Win-
dows, a clearly better solution is to use a Unix friendly text editor

When we are not using Windows, or we are using a Unix friendly text
editor, the previous commands will execute, but nothing will happen to the
contents of reversemyfile.sh, since the tr command will not remove any char-
acter. To see the command working replace 'r' by '$' and check what hap-
pens.

Permissions

A script also needs permission to be executed, so every time we create a new
script file we need to type:

$ chmod u+x reversemyfile.sh

The command line tool chmod just gave the user (u) permissions to execute
(+x). We can type man chmod or chmod --help to know more about this
command line tool.

Finally, we can execute the script by providing the myfile.txt as argument:

$./reversemyfile.sh myfile.txt

31 https://en.wikipedia.org/wiki/APT_(Debian)
32 https://en.wikipedia.org/wiki/Yum_(software)
33 https://brew.sh/

https://en.wikipedia.org/wiki/APT_(Debian)
https://en.wikipedia.org/wiki/Yum_(software)
https://brew.sh/

3.2 Unix shell 41

The contents of the file should appear in our terminal in the reverse order:

line 4
line 3
line 2
line 1

Congratulations, we made our first script work! ⌣̈
In case the terminal responds with a Permission denied error message, we

need to check if the chmod was done correctly.
In case the terminal responds with a failed to open myfile.txt error message,

we need to check if the reversemyfile.sh file was saved as a Unix text file, as
explained above.

If we give more arguments, they will be ignored:

$./reversemyfile.sh myfile.txt myotherfile.txt 'my ↷

other file.txt'

The output will be exactly the same because our script does not use $2 and
$3, that in this case will represent myotherfile.txt and my other file.txt, re-
spectively. We should note that when containing spaces, the argument must
be enclosed by single quotes.

Debug

If something is not working well, we can debug the entire script by typing:

$ bash -x reversemyfile.sh myfile.txt

Our terminal will not only display the resulting text, but also the command
line tools executed preceded by the plus character (+):

+ tac myfile.txt
line 4
line 3
line 2
line 1

Alternatively, we can add the set -x command line in our script to start the
debugging mode, and set +x to stop it.

Save output

We can now save the output into another file named mynewfile.txt by typing:

$./reversemyfile.sh myfile.txt > mynewfile.txt

Again, to check if the file was really created, we can use the cat tool:

42 3 Data Retrieval

$ cat mynewfile.txt

Or, we can reverse it again by typing:

$./reversemyfile.sh mynewfile.txt

Of course, the result should exactly be the original contents of myfile.txt.

3.3 Web Identifiers

The input argument(s) of our retrieval task is the chemical compound(s) of
which we want to retrieve more information. For the sake of simplicity, we
will start by assuming that the user knows the ChEBI identifier(s), i.e. the
script does not have to search by the name of the compounds. Nevertheless,
finding the identifier of a compound by its name is also possible, and this
manuscript will describe how to do it later on.

So, the first step, is to automatically retrieve all proteins associated to the
given input chemical compound, that in our example was caffeine (CHEBI:27732).
In the manual process, we downloaded the files by manually clicking on the
links shown as Export options, namely the URLs:

https://www.ebi.ac.uk/chebi/viewDbAutoXrefs.do?d
-1169080-e=1&6578706f7274=1&chebiId=27732&dbName=
UniProt

https://www.ebi.ac.uk/chebi/viewDbAutoXrefs.do?d
-1169080-e=2&6578706f7274=1&chebiId=27732&dbName=
UniProt

https://www.ebi.ac.uk/chebi/viewDbAutoXrefs.do?d
-1169080-e=3&6578706f7274=1&chebiId=27732&dbName=
UniProt

for downloading a CSV, Excel, or XML file, respectively.
We should note that the only difference between the three URLs is a single

numerical digit (1, 2, and 3) after the first equals character (=), which means
that this digit can be used as an argument to select the type of file. Another
parameter that is easily observable is the ChEBI identifier (27732). Try to
replace 27732 by 17245 in any of those URLs by using a text editor, for
example:

https://www.ebi.ac.uk/chebi/viewDbAutoXrefs.do?d
-1169080-e=1&6578706f7274=1&chebiId=17245&dbName=
UniProt

Now we can use this new URL in the internet browser, and check what hap-
pens. If we did it correctly, our browser downloaded a file with more than
seven hundred proteins, since the 17245 is the ChEBI identifier of a popular
chemical compound in life systems, the carbon monoxide.

3.3 Web Identifiers 43

In this case, we are not using a fully RESTful web service, but the data
path is pretty modular and self-explanatory. The path is clearly composed of:

• the name of the database (chebi);
• the method (viewDbAutoXrefs.do);
• and a list of parameters and their value (arguments) after the question

mark character (?).

The order of the parameters in the URL is normally not relevant. They are
separated by the ampersand character (&) and the equals character (=) is
used to assign a value to each parameter (argument). This modular structure
of these URLs allows us to use them as data pipelines to fill our local files with
data, like pipelines that transport oil or gas from one container to another.

Single and double quotes

To construct the URL for a given ChEBI identifier, let us first understand the
difference between single quotes and double quotes in a string (sequence of
characters). We can create a script file named getproteins.sh by using a text
editor to add the following lines:

1 echo 'The input: $1'
2 echo "The input: $1"

The command line tool echo displays the string received as argument. Do
not forget to save it in our working directory and add the right permissions
with chmod as we did previously with our first script.

Now to execute the script we will only need to type:

$./getproteins.sh

The output on the terminal should be:

The input: $1
The input:

This means that when using single quotes, the string is interpreted literally
as it is, whereas the string within double quotes is analyzed, and if there is a
special character, such as the dollar sign ($), the script translates it to what
it represents. In this case, $1 represents the first input argument. Since no
argument was given, the double quotes displays nothing.

To execute the script with an argument, we can type:

$./getproteins.sh 27732

The output on our terminal should be:

The input: $1
The input: 27732

44 3 Data Retrieval

We can check now that when using double quotes $1 is translated to the
string given as argument.

Now we can update our script file named getproteins.sh to contain only the
following line:

1 echo "https://www.ebi.ac.uk/chebi/viewDbAutoXrefs.do?d ↷

-1169080-e=1&6578706f7274=1&chebiId=$1&dbName= ↷
UniProt"

Comments

Instead of removing the previous lines, we can transform them in comments
by adding the hash character (#) to the beginning of the line:

1 #echo 'The input: $1'
2 #echo "The input: $1"
3 echo "https://www.ebi.ac.uk/chebi/viewDbAutoXrefs.do?d ↷

-1169080-e=1&6578706f7274=1&chebiId=$1&dbName= ↷

UniProt"

Commented lines are ignored by the computer when executing the script.
Now, we can execute the script giving the ChEBI identifier as argument:

$./getproteins.sh 27732

The output on our terminal should be the link that returns the CSV file con-
taining the proteins associated with caffeine.

3.4 Data Retrieval

After having the link, we need a web retrieval tool that works like our internet
browser, i.e. receives as input a URL for programmatic access and retrieves
its contents from the internet. We will use Client Uniform Resource Locator
(cURL), which is available as a command line tool, and allows us to download
the result of opening a URL directly into a file (man curl or curl --help
for more information).

For example, to display in our screen the list of proteins related to caffeine,
we just need to add the respective URL as input argument:

$ curl 'https://www.ebi.ac.uk/chebi/viewDbAutoXrefs.do?d ↷

-1169080-e=1&6578706f7274=1&chebiId=27732&dbName= ↷

UniProt'

3.4 Data Retrieval 45

In some systems the curl command needs to be installed 34. Since we are
using a secure connection https, we may also need to install the ca-certificates
package 35.

The output on our terminal should be the long list of proteins:

...
Q15413,Ryanodine receptor 3,CC - MISCELLANEOUS
Q92375,Thioredoxin reductase,DE
Q92736,Ryanodine receptor 2,CC - MISCELLANEOUS

An alternative to curl is the command wget, which also receives a URL
as argument but by default wget writes the contents to a file instead of
displaying it on the screen (man wget or wget --help for more informa-
tion). So, the equivalent command, is to add the -O- option to select where
the contents is placed:

$ wget -O- 'https://www.ebi.ac.uk/chebi/viewDbAutoXrefs. ↷

do?d-1169080-e=1&6578706f7274=1&chebiId=27732& ↷

dbName=UniProt'

We should note that dash - character after -O represents the standard output.
The equivalent long form to the -O option is --output-document=file.

Instead of using a fixed URL, we can update the script named getproteins.sh
to contain only the following line:

1 curl "https://www.ebi.ac.uk/chebi/viewDbAutoXrefs.do?d ↷

-1169080-e=1&6578706f7274=1&chebiId=$1&dbName= ↷

UniProt"

We should note that now we are using double quotes, since we replaced the
caffeine identifier by $1.

Now to execute the script we only need to provide a ChEBI identifier as
input argument:

$./getproteins.sh 27732

The output on our terminal should be the long list of proteins:

...
Q15413,Ryanodine receptor 3,CC - MISCELLANEOUS
Q92375,Thioredoxin reductase,DE
Q92736,Ryanodine receptor 2,CC - MISCELLANEOUS

Or, if we want the proteins related to carbon monoxide, we only need to
replace the argument:

$./getproteins.sh 17245

34 apt install curl
35 apt install ca-certificates

46 3 Data Retrieval

And the output on our terminal should be an even longer list of proteins:

...
Q58432,Phosphomethylpyrimidine synthase,CC - CATALYTIC

ACTIVITY
Q62976,Calcium-activated potassium channel subunit

alpha-1,CC - ENZYME REGULATION; CC - DOMAIN
Q63185,Eukaryotic translation initiation factor 2-alpha

kinase 1,CC - ENZYME REGULATION

If we want to analyze all the lines we can redirect the output to the com-
mand line tool less, which allows us to navigate through the output by
using the arrow keys. To do that we can add the bar character (|) between
two commands, which will transfer the output of the first command as input
of the second:

$./getproteins.sh 27732 | less

To exit from less just press q.
However, what we really want is to save the output as a file, not just

printing some characters on the screen. Thus, what we should do is redirect
the output to a CSV file. This can be done by adding the redirect operator >
and the filename, as described previously:

$./getproteins.sh 27732 > chebi_27732_xrefs_UniProt.csv

We should note that curl still prints some progress information into the
terminal.

Standard error output

This happens because it is displaying that information into the standard er-
ror output, which was not redirected to the file 36. The > character without
any preceding number by default redirects the standard output. The same
happens if we precede it by the number 1. If we do not want to see that
information, we can also redirect the standard error output (2), but in this
case to the null device (/dev/null):

$./getproteins.sh 27732 > chebi_27732_xrefs_UniProt.csv ↷

2>/dev/null

We can also use the -s option of curl in order to suppress the progress
information, by adding it to our script file named getproteins.sh:

1 curl -s "https://www.ebi.ac.uk/chebi/viewDbAutoXrefs. ↷

do?d-1169080-e=1&6578706f7274=1&chebiId=$1&dbName=↷

UniProt"

36 https://www.gnu.org/software/bash/manual/html_node/Redirection
s.html

https://www.gnu.org/software/bash/manual/html_node/Redirections.html
https://www.gnu.org/software/bash/manual/html_node/Redirections.html

3.5 Data Extraction 47

The equivalent long form to the -s option is --silent.
Now when executing the script, no progress information is shown:

$./getproteins.sh 27732 > chebi_27732_xrefs_UniProt.csv

To check if the file was really created and to analyze its contents, we can
use the less command:

$ less chebi_27732_xrefs_UniProt.csv

We can also open the file in our spreadsheet application, such as LibreOffice
Calc or Microsoft Excel.

As an exercise execute the script to get the CSV file with the associated
proteins of water 37 and gold 38.

3.5 Data Extraction

Some data in the CSV file may not be relevant regarding our information
need, i.e. we may need to identify and extract relevant data. In our case, we
will select the relevant proteins (lines) using the command line tool grep,
and secondly, we will select the column we need using the command line tool
cut.

Since our information need is about diseases related to caffeine, we may
assume that we are only interested in proteins that have one of these topics
in the third column:

CC - MISCELLANEOUS
CC - DISRUPTION PHENOTYPE
CC - DISEASE

Extracting lines from a text file is the main function of grep. The selection
is performed by giving as input a pattern that grep tries to find in each line,
presenting only the ones where it was able to find a match. The pattern is
the same as the one we normally use when searching for a word in our text
editor. The grep command also works with more complex patterns such as
regular expressions, that we will describe later on.

Single and multiple patterns

We can execute the following command that selects the proteins with the
topic CC - MISCELLANEOUS, our pattern, in our CSV file:

$ grep 'CC - MISCELLANEOUS' chebi_27732_xrefs_UniProt. ↷

csv

37 https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:15377
38 https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:30050

https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:15377
https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:30050

48 3 Data Retrieval

The output will be a shorter list of proteins, all with CC - MISCELLANEOUS
as topic:

A2AGL3,Ryanodine receptor 3,CC - MISCELLANEOUS
B0LPN4,Ryanodine receptor 2,CC - MISCELLANEOUS
E9PZQ0,Ryanodine receptor 1,CC - MISCELLANEOUS
E9Q401,Ryanodine receptor 2,CC - MISCELLANEOUS
F1LMY4,Ryanodine receptor 1,CC - MISCELLANEOUS
P11716,Ryanodine receptor 1,CC - MISCELLANEOUS
P21817,Ryanodine receptor 1,CC - DISEASE; CC -

MISCELLANEOUS
P54867,Protein SLG1,CC - MISCELLANEOUS
Q9TS33,Ryanodine receptor 3,CC - MISCELLANEOUS
Q15413,Ryanodine receptor 3,CC - MISCELLANEOUS
Q92736,Ryanodine receptor 2,CC - MISCELLANEOUS

To use multiple patterns, we must precede each pattern with the -e op-
tion:

$ grep -e 'CC - MISCELLANEOUS' -e 'CC - DISRUPTION ↷

PHENOTYPE' -e 'CC - DISEASE' ↷

chebi_27732_xrefs_UniProt.csv

The equivalent long form to the -e option is --regexp=PATTERN.
The output on our terminal should be a longer list of proteins:

...
Q9VSH2,Gustatory receptor for bitter taste 66a,CC -

FUNCTION; CC - DISRUPTION PHENOTYPE
Q15413,Ryanodine receptor 3,CC - MISCELLANEOUS
Q92736,Ryanodine receptor 2,CC - MISCELLANEOUS

We should note that as previously, we can add | less to check all of
them more carefully. The less command also gives the opportunity to find
lines based on a pattern. We only need to type / and then a pattern.

We can now update our script file named getproteins.sh to contain the
following lines:

1 curl -s "https://www.ebi.ac.uk/chebi/viewDbAutoXrefs. ↷

do?d-1169080-e=1&6578706f7274=1&chebiId=$1&dbName= ↷

UniProt" | \
2 grep -e 'CC - MISCELLANEOUS' -e 'CC - DISRUPTION ↷

PHENOTYPE' -e 'CC - DISEASE'

We should note that we added the -s option to suppress the progress infor-
mation of curl, and the characters | \ to the end of line to redirect the
output of that line as input of the next line, in this case the grep command.
We need to be careful in ensuring that \ is the last character in the line, i.e.
spaces in the end of the line may cause problems.

3.5 Data Extraction 49

We can now execute the script again:

$./getproteins.sh 27732

The output should be similar of what we got previously, but the script down-
loads the data and filters immediately.

To save the file with the relevant proteins, we only need to add the redi-
rection operator:

$./getproteins.sh 27732 > ↷

chebi_27732_xrefs_UniProt_relevant.csv

Data elements selection

Now we need to select just the first column, the one that contains the protein
identifiers. Selecting columns from a tabular file is one easy task for cut.
The cut command can receive as arguments the character that divides each
data element (column) in a line using the -d option, and the -f option to
indicate which columns to select. The equivalent long form to the -d option
is --delimiter=DELIM. The equivalent long form to the -f option is --
fields=LIST.

For example, we can get the first column of our CSV file:

$ cut -d, -f1 < chebi_27732_xrefs_UniProt_relevant.csv

We should note that comma (,) is the character that separates data elements
in a CSV file, and 1 represents the first data element.

The command will display only the first column of the file, i.e. the protein
identifiers:

...
Q9VSH2
Q15413
Q92736

For example, we can get the first and third columns separated by a comma:

$ cut -d, -f1,3 < chebi_27732_xrefs_UniProt_relevant.csv

Now, the output contains both the first and third column of the file:

...
Q9VSH2,CC - FUNCTION; CC - DISRUPTION PHENOTYPE
Q15413,CC - MISCELLANEOUS
Q92736,CC - MISCELLANEOUS

We can update our script file named getproteins.sh to contain the following
lines:

50 3 Data Retrieval

1 curl -s "https://www.ebi.ac.uk/chebi/viewDbAutoXrefs. ↷

do?d-1169080-e=1&6578706f7274=1&chebiId=$1&dbName=↷

UniProt" | \
2 grep -e 'CC - MISCELLANEOUS' -e 'CC - DISRUPTION ↷

PHENOTYPE' -e 'CC - DISEASE' | \
3 cut -d, -f1

The last line is the only that changes, except the | \ in the previous line to
redirect the output.

To execute the script, we can type again:

$./getproteins.sh 27732

The output should be similar of what we got previously, but now only the
protein identifiers are displayed.

To save the output as a file with the relevant proteins’ identifiers, we only
need to add the redirection operator:

$./getproteins.sh 27732 > ↷

chebi_27732_xrefs_UniProt_relevant_identifiers.csv

3.6 Task Repetition

Given a protein identifier we can construct the URL that will enable us to
download its information from UniProt. We can use the RESTful web services
provided by UniProt 39, more specifically the one that allow us to retrieve a
specific entry 40. The construction of the URL is simple, it starts always
by https://rest.uniprot.org/uniprotkb/, followed by the protein
identifier, ending with a dot and the data format. For example, the link for
protein P21817 using the XML format is:
https://rest.uniprot.org/uniprotkb/P21817.xml

Assembly line

However, we need to construct one URL for each protein from the list we
previously retrieved. The size of the list can be large (hundreds of proteins),
varies for different compounds and evolves with time. Thus, we need an
assembly line in which a list of proteins identifiers, independently of its size,
are added as input to commands that construct one URL for each protein and
retrieve the respective file.

39 https://www.uniprot.org/help/api
40 https://www.uniprot.org/help/api_retrieve_entries

https://rest.uniprot.org/uniprotkb/P21817.xml
https://www.uniprot.org/help/api
https://www.uniprot.org/help/api_retrieve_entries

3.6 Task Repetition 51

The xargs command line tool works as an assembly line, it executes a
command per each line given as input. We should note that if we are using
MobaXterm we may need to install the findutils package 41, since the default
xargs only has minimal options 42

We can start by experimenting the xargs command by giving as input the
list of protein identifiers in file chebi_27732_xrefs_UniProt_relevant_identifiers.csv,
and display each identifier on the screen in the middle of a text message by
providing the echo command as argument:

$ cat chebi_27732_xrefs_UniProt_relevant_identifiers.csv ↷

| xargs -I {} echo 'Another protein id {} to ↷

retrieve'

The xargs command received as input the contents our CSV file, and for
each line displayed a message including the identifier in that line. The -I
option tells xargs to replace {} in the command line given as argument by
the value of the line being processed. The equivalent long form to the -I
option is --replace=R.

The output should be something like this:

...
Another protein id Q9VSH2 to retrieve
Another protein id Q15413 to retrieve
Another protein id Q92736 to retrieve

Instead of creating inconsequential text messages, we can use xargs to
create the URLs:

$ cat chebi_27732_xrefs_UniProt_relevant_identifiers.csv ↷

| xargs -I {} echo 'https://rest.uniprot.org/ ↷

uniprotkb/{}.xml'

The output should be something like this:

...
https://rest.uniprot.org/uniprotkb/Q9VSH2.xml
https://rest.uniprot.org/uniprotkb/Q15413.xml
https://rest.uniprot.org/uniprotkb/Q92736.xml

We can try to use these links in our internet browser to check if those
displayed URLs are working correctly.

Now that we have the URLs, we can automatically download the files using
the curl command instead of echo:

41 apt install findutils
42 In some versions the scripts may have to use xargs.exe to invoke the new version. Or
rename the xargs shortcut in the bin folder to other name, that way the right version will
always be invoked.

52 3 Data Retrieval

$ cat chebi_27732_xrefs_UniProt_relevant_identifiers.csv ↷

| xargs -I {} curl 'https://rest.uniprot.org/ ↷

uniprotkb/{}.xml' -o 'chebi_27732_{}.xml'

We should note that we now use the -o option to save the output to a given
file, named after each protein identifier. The equivalent long form to the -o
option is --output <file>.

To check if everything worked as expected we can use the ls command to
view which files were created:

$ ls chebi_27732_*.xml

The asterisk character (*) is here used to represent any file whose name
starts with chebi_27732_ and ends with .xml.

To check the contents of any of them, we can use the less command:

$ less chebi_27732_P21817.xml

File header

We should note that the content of every file has to start with <?xml other-
wise there was a download error, and we have to run curl again for those
entries. To check the header of each file, we can use the head command
together with less.

$ head -n 1 chebi_27732_*.xml | less

The -n option specifies how many lines to print, in the previous command
just one.

If for any reason, we are not able to download the files from UniProt, we
can get them from the book file archive 43.

Variable

We can now update our script file named getproteins.sh to contain the follow-
ing lines:

1 ID=$1 # The CHEBI identifier given as input is renamed ↷

to ID
2 rm -f chebi_$ID_*.xml # Removes any previous files
3 curl -s "https://www.ebi.ac.uk/chebi/viewDbAutoXrefs. ↷

do?d-1169080-e=1&6578706f7274=1&chebiId=$ID&dbName= ↷

UniProt" | \

43 http://labs.rd.ciencias.ulisboa.pt/book/

http://labs.rd.ciencias.ulisboa.pt/book/

3.7 XML Processing 53

4 grep -e 'CC - MISCELLANEOUS' -e 'CC - DISRUPTION ↷

PHENOTYPE' -e 'CC - DISEASE' | \
5 cut -d, -f1 | xargs -I {} curl 'https://rest.uniprot. ↷

org/uniprotkb/{}.xml' -o chebi_$ID_{}.xml

We should note that the last line now includes the xargs and curl com-
mands, and the $ID variable. This new variable is created in the first line to
contain the first value given as argument ($1). So, every time we mention
$ID in the script we are mentioning the first value given as argument. This
avoids ambiguity in cases where $1 is used for other purposes.Since the pre-
ceding character of $ID is an underscore (_), we have to add a backslash (\)
before it. The second line uses the rm command to remove any files that were
downloaded in a previous execution. We also now added two comments after
character, so we humans do not forget why these commands are needed
for.

To execute the script once more:

$./getproteins.sh 27732

And again, to check the results:

$ head -n 1 chebi_27732_*.xml | less

3.7 XML Processing

Assuming that our information need only concerns human diseases, we have
to process the XML file of each protein to check if it represents a Homo sapiens
(Human) protein.

Human proteins

For performing this filter, we can again use the grep command, to select only
the lines of any XML file that specify the organism as Homo sapiens:

$ grep '<name type="scientific">Homo sapiens</name>' ↷

chebi_27732_*.xml

We should get in our display the filenames that represent a human protein,
i.e. something like this:

chebi_27732_P21817.xml:<name type="scientific">Homo
sapiens</name>

chebi_27732_Q15413.xml:<name type="scientific">Homo
sapiens</name>

54 3 Data Retrieval

chebi_27732_Q8N490.xml:<name type="scientific">Homo
sapiens</name>

chebi_27732_Q92736.xml:<name type="scientific">Homo
sapiens</name>

We should note that since the asterisk character (*) provides multiple files
as argument to grep, the ones whose name starts with chebi_27732_ and
ends with .xml, the output now includes the filename (followed by a colon)
where each line was matched.

We can use the cut command to extract only the filename, but grep has
the -l option to just print the filename:

$ grep -l '<name type="scientific">Homo sapiens</name>' ↷

chebi_27732_*.xml

The equivalent long form to the -l option is --files-with-matches.
The output will now show only the filenames:

chebi_27732_P21817.xml
chebi_27732_Q15413.xml
chebi_27732_Q8N490.xml
chebi_27732_Q92736.xml

These four files represent the four Human proteins related to caffeine.

PubMed identifiers

Now we need to extract the PubMed identifiers from these files to retrieve
the related publications. For example, if we execute the following command:

$ grep '<dbReference type="PubMed"' chebi_27732_P21817. ↷

xml

The output is a long list of publications related to protein P21817:

...
<dbReference type="PubMed" id="11741831"/>
<dbReference type="PubMed" id="16163667"/>
<dbReference type="PubMed" id="27586648"/>

To extract just the identifier, we can again use the cut command:

$ grep '<dbReference type="PubMed"' chebi_27732_P21817. ↷

xml | cut -d\" -f4

We should note that " is used as the separation character and, since the
PubMed identifier appears after the third ", the 4 represents the identifier.

Now the output should be something like this:

3.7 XML Processing 55

...
11741831
16163667
27586648
18318008

PubMed identifiers extraction

Now to apply to every protein we may again use the xargs command:

$ grep -l '<name type="scientific">Homo sapiens</name>' ↷

chebi_27732_*.xml | xargs -I {} grep '<dbReference ↷

type="PubMed"' {} | cut -d\" -f4

This may provide a long list of PubMed identifiers, including repetitions since
the same publication can be cited in different entries.

Duplicate removal

To help us identify the repetitions, we can add the sort command (man
sort or sort --help for more information), which will display the re-
peated identifiers in consecutive lines (due by sorting all identifiers):

$ grep -l '<name type="scientific">Homo sapiens</name>' ↷

chebi_27732_*.xml | xargs -I {} grep '<dbReference ↷

type="PubMed"' {} | cut -d\" -f4 | sort

For example some repeated PubMed identifiers that we should easily be
able to see:

...
9607712
9607712
9607712

Fortunately, we also have the -u option that removes all these duplicates:

$ grep -l '<name type="scientific">Homo sapiens</name>' ↷

chebi_27732_*.xml | xargs -I {} grep '<dbReference ↷

type="PubMed"' {} | cut -d\" -f4 | sort -u

To easily check how many duplicates were removed, we can use the word
count wc command with and without the usage of the -u option:

$ grep -l '<name type="scientific">Homo sapiens</name>' ↷

chebi_27732_*.xml | xargs -I {} grep '<dbReference ↷

type="PubMed"' {} | cut -d\" -f4 | sort | wc

56 3 Data Retrieval

$ grep -l '<name type="scientific">Homo sapiens</name>' ↷

chebi_27732_*.xml | xargs -I {} grep '<dbReference ↷

type="PubMed"' {} | cut -d\" -f4 | sort -u | wc

In case we have in our folder any auxiliary file, such as chebi_27732_P21817_entry
.xml, we should add the option --exclude *entry.xml to the first grep
command.

The output should be something like:

263 263 2315
133 133 1172

wc prints the numbers of lines, words, and bytes, thus in our case we are
interested in first number (man wc or wc --help for more information).
We can see that we have removed 263−133 = 130 duplicates.

Just for curiosity, we can also use the shell to perform simple mathematical
calculations using the expr command:

$ expr 263 - 133

Now let us create a script file named getpublications.sh by using a text
editor to add the following lines:

1 ID=$1 # The CHEBI identifier given as input is renamed ↷

to ID
2 grep -l '<name type="scientific">Homo sapiens</name>' ↷

chebi_$ID_*.xml | \
3 xargs -I {} grep '<dbReference type="PubMed"' {} | \
4 cut -d\" -f4 | sort -u

Again, do not forget to save it in our working directory, and add the right
permissions with chmod as we did previously with the other scripts.

To execute the script again:

$./getpublications.sh 27732

We can verify how many unique publications were obtained by using the
-l option of wc, that provides only the number of lines:

$./getpublications.sh 27732 | wc -l

The output will be 133 as expected.

Complex Elements

Not always the XML elements are in the same line, as fortunately was the case
of the PubMed identifiers. In those cases, we may have to use the xmllint
command, a parser that is able to extract data through the specification of a
XPath query, instead of using a single line pattern as in grep.

3.7 XML Processing 57

XPath

XPath (XML Path Language) is a powerful tool to extract information from
XML and HTML documents by following their hierarchical structure. Check
W3C for more about XPath syntax 44. We should note that xmllint may not
be installed by default depending on our operating system, but it should be
very easy to do it 45 If we are using MobaXterm, then we need to install the
xmllint plugin 46.

Namespace problems

In the case of our protein XML files, we can see that their second line defines
a specific namespace using the xmlns attribute 47:

<uniprot xmlns="http://uniprot.org/uniprot" xmlns:xsi="
http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://uniprot.org/uniprot http:
//www.uniprot.org/support/docs/uniprot.xsd">

This complicates our XPath queries, since we need to explicitly specify that
we are using the local name for every element in a XPath query. For example,
to get the data in each reference element:

$ xmllint --xpath "//*[local-name()='reference']"

↷

chebi_27732_P21817.xml

We should note that // means any path in the XML file until reaching a
reference element. The square brackets in XPath queries normally represent
conditions that need to be verified.

Only local names

If we are only interested in using local names there is a way to avoid the
usage of local-name() for every element in a XPath query. We can identify
the top-level element, in our case entry, and extract all the data that it
encloses using a XPath query. For example, we can create the auxiliary file
chebi_27732_P21817_entry.xml by adding the redirection operator:

$ xmllint --nsclean --xpath "//*[local-name()='entry']"

↷

chebi_27732_P21817.xml > chebi_27732_P21817_entry. ↷

xml

44 https://www.w3schools.com/xml/xpath_syntax.asp
45 apt install libxml2-utils
46 https://mobaxterm.mobatek.net/plugins.html
47 https://www.w3schools.com/xml/xml_namespaces.asp

https://www.w3schools.com/xml/xpath_syntax.asp
https://mobaxterm.mobatek.net/plugins.html
https://www.w3schools.com/xml/xml_namespaces.asp

58 3 Data Retrieval

The --nsclean removes the redundant namespace declaration in entry.
The new XML file now starts and ends with the entry element without

any namespace definition:

<entry dataset="Swiss-Prot" created="1991-05-01" ...
<accession>P21817</accession>
...
</sequence>
</entry>

Now we can apply any XPath query, for example //reference, on the
auxiliary file without the need to explicitly say that it represents a local name:

$ xmllint --xpath '//reference' chebi_27732_P21817_entry ↷

.xml

The output should contain only the data inside of each reference element:

<reference key="1">
<citation type="journal article" date="1990" name="J.

Biol. Chem." volume="265" first="2244" last="2256">
<title>Molecular cloning of cDNA encoding human and

rabbit forms of the Ca2+ release channel (ryanodine
receptor) of skeletal muscle sarcoplasmic reticulum.
</title>

...
<dbReference type="DOI" id="10.1111/cge.12810"/>
</citation>
<scope>VARIANTS CCD PRO-2963 AND ASP-4806</scope>
</reference>

Queries

The XPath syntax allow us to create many useful queries, such as:

• //dbReference - elements of type dbReference that are descendants
of something; Result:

<dbReference type="NCBI Taxonomy" id="9606"/>
...
<dbReference type="PubMed" id="27586648"/>

• /entry//dbReference - equivalent to the previous query but specify-
ing that the dbReference elements are descendants of the entry ele-
ment;

• /entry/reference/citation/dbReference - similar to the previ-
ous query but specifying the full path in the XML file, i.e. only dbReference
elements descendants of citation, reference and entry elements;

3.7 XML Processing 59

• //dbReference/* - any child elements of a dbReference element;
Result:

<property type="protein sequence ID" value="AAA60294
.1"/> ... <property type="match status" value="5"/
>

• //dbReference/property[1] - first property element of each dbReference
element; Result:

<property type="protein sequence ID" value="AAA60294
.1"/> ... <property type="entry name" value="MIR"/
>

• //dbReference/property[2] - second property element of each
dbReference element; Result:

<property type="molecule type" value="mRNA"/> ... <
property type="match status" value="5"/>

• //dbReference/property[3] - third property element of each dbReference
element; Result:

<property type="molecule type" value="Genomic_DNA"/>
... <property type="project" value="UniProtKB"/>

• //dbReference/property/@type - all type attributes of the property
elements; Result:

type="protein sequence ID" type="molecule type" type=
"protein sequence ID" ... type="entry name" type="
match status"

• //dbReference/property[@type="protein sequence ID"] - the
previous property elements that have an attribute type equal to protein
sequence ID; Result:

<property type="protein sequence ID" value="AAA60294
.1"/> ... <property type="protein sequence ID"
value="ENSP00000352608"/>

• //dbReference/property[@type="protein sequence ID"]/@value
- the string assigned to each attribute value of the previous property

elements; Result:

value="AAA60294.1" value="AAC51191.1" ... value="
ENSP00000352608"

• /entry/sequence/text() - the contents inside the sequence ele-
ment; Result:

MGDAEGEDEVQF...DCFRKQYEDQLS

60 3 Data Retrieval

We should note that to try the previous queries we only need to replace
the string after the --xpath option of the previous xmllint command,
such as:

$ xmllint --xpath '//dbReference' ↷

chebi_27732_P21817_entry.xml

Thus, an alternative way to extract the PubMed identifiers using xmllint
instead of grep, would be something like this:

$ xmllint --xpath '//dbReference[@type="PubMed"]/@id' ↷

chebi_27732_P21817_entry.xml

However, the output contains all identifiers in the same line and with the
id label:

...
id="11741831"
id="16163667"
id="27586648"

Previous versions of xmllint may print all the output in the same line.
In that case, we need to add an extra tr ' ' 'n' command to split the
output in multiple lines (one line per identifier).

Extracting XPath results

To extract the identifiers, we can use the cut command:

$ xmllint --xpath '//dbReference[@type="PubMed"]/@id' ↷

chebi_27732_P21817_entry.xml | cut -d\" -f2

The cut command extracts the value inside the double quotes.

3.8 Text Retrieval

Now that we have all the PubMed identifiers, we need to download the text
included in the titles and abstracts of each publication.

Publication URL

To retrieve from the UniProt citations service the publication entry of a given
identifier, we can again use the curl command and a link to the publication
entry. For example, if we click on the Format button of the UniProt citations

3.8 Text Retrieval 61

service entry 48, we can get the link to the RDF/XML version. RDF 49 is a
standard data model that can be serialized in a XML format. Thus, in our
case, we can deal with this format like we did with XML.

We can retrieve the publication entry by executing the following com-
mand:

$ curl https://rest.uniprot.org/citations/1354642.rdf

Alternatively, we can use the web service provided by PubMed at NCBI50,
by still using curl but with another link:

$ curl 'https://eutils.ncbi.nlm.nih.gov/entrez/eutils/ ↷

efetch.fcgi?db=pubmed&id=1354642&retmode=text& ↷

rettype=xml'

The result is in XML and we can replace the PubMed identifier 135464 by a
comma separated list of identifiers, such has 2298749,1354642,8220422.

Thus, we can now update the script getpublications.sh to have the follow-
ing commands:

1 ID=$1 # The CHEBI identifier given as input is renamed ↷

to ID
2 rm -f chebi_$ID_*.rdf # Removes any previous files
3 grep -l '<name type="scientific">Homo sapiens</name>' ↷

chebi_$ID_*.xml | \
4 xargs -I {} grep '<dbReference type="PubMed"' {} | \
5 cut -d\" -f4 | sort -u | \
6 xargs -I {} curl 'https://rest.uniprot.org/citations↷

/{}.rdf' -o chebi_$ID_{}.rdf

We should note that only the second and last lines were updated to remove
and retrieve the files, respectively.

Now let us execute the script:

$./getpublications.sh 27732

It may take a while to download all the entries, but probably no more than
one minute with a standard internet connection.

To check if everything worked as expected we can use the ls command to
view which files were created:

$ ls chebi_27732_*.rdf

If for any reason, we are not able to download the abstracts from UniProt,
we can get them from the book file archive 51.

48 https://rest.uniprot.org/citations/1354642
49 https://www.w3.org/RDF/
50 https://www.ncbi.nlm.nih.gov/books/NBK25499/#chapter4.EFetch
51 http://labs.rd.ciencias.ulisboa.pt/book/

https://rest.uniprot.org/citations/1354642
https://www.w3.org/RDF/
https://www.ncbi.nlm.nih.gov/books/NBK25499/#chapter4.EFetch
http://labs.rd.ciencias.ulisboa.pt/book/

62 3 Data Retrieval

Title and Abstract

Each file has the title and abstract of the publication as values of the title
and rdfs:comment elements, respectively. To extract them we can again
use the xmllint command:

$ xmllint --xpath "//*[local-name()='title' or local- ↷
name()='comment']" chebi_27732_1354642.rdf

The output should be something like these two lines:

<title>Polymorphisms ... hyperthermia.</title>
<rdfs:comment>Twenty-one ... gene.</rdfs:comment>

To remove the XML elements, we can again add text() to the XPath
query:

$ xmllint --xpath "//*[local-name()='title' or local- ↷

name()='comment']/text()" chebi_27732_1354642.rdf

The output should now be free of XML elements:

Polymorphisms ... hyperthermia.
Twenty-one ... gene.

Thus, let us create the script gettext.sh to have the following commands:

1 ID=$1 # The CHEBI identifier given as input is renamed ↷

to ID
2 xmllint --xpath "//*[local-name()='title' or local- ↷

name()='comment']/text()" chebi_$ID_*.rdf

Again do not forget to save it in our working directory, and add the right
permissions.

Now to execute the script and see the retrieved text:

$./gettext.sh 27732 | less

We can save the resulting text in a file named chebi_27732.txt that we
may share or read using our favorite text editor, by adding the redirection
operator:

$./gettext.sh 27732 > chebi_27732.txt

Disease Recognition

Instead of reading all that text to find any disease related with caffeine, we
can try to find sentences about a given disease by using grep:

$ grep 'malignant hyperthermia' chebi_27732.txt

3.9 Further Reading 63

To save the filtered text in a file named chebi_27732_hyperthermia.txt, we
only need to add the redirection operator:

$ grep 'malignant hyperthermia' chebi_27732.txt > ↷

chebi_27732_hyperthermia.txt

This is a very simple way of recognizing a disease in text. The next chapters
will describe how to perform more complex text processing tasks.

3.9 Further Reading

If we really want to become an expert in shell scripting we may be interested
in reading a book specialized in the subject, such as the book entitled The
Linux command line: a complete introduction [Shotts Jr, 2012].

A more pragmatic approach is to explore the vast number of online tutori-
als about shell scripting and web technologies, such as the ones provided by
W3Schools 52

52 https://www.w3schools.com/

https://www.w3schools.com/

Chapter 4
Text Processing

In the previous chapter we were able to automatically process structured data
to retrieve biomedical text about any chemical compound, such as caffeine.
This chapter will provide a step-by-step introduction to how we can process
that text using shell script commands, specifically extract information about
diseases related to caffeine. The goal is to equip the reader with an essential
set of skills to extract meaningful information from any text.

4.1 Pattern Matching

We used the grep command in the last chapter to find a disease in the text,
since grep receives as argument a pattern to find an exact match in the text,
like any search functionality provided by conventional text editors. However,
we may need to search for multiple patterns even when interested in a single
disease. For example, when searching for mentions of malignant hyperther-
mia, we may also be interested in finding mentions using related expressions,
such as:

MH : acronym
MHS : acronym for malignant hyperthermia susceptible

Since we already know how to deal with multiple patterns by using the
-e option, we may easily solve this problem by executing:

$ grep -e 'malignant hyperthermia' -e 'MH' -e 'MHS' ↷

chebi_27732.txt

65

66 4 Text Processing

Case insensitive matching

When dealing with text, using a case sensitive search is usually a good ap-
proach to avoid wrong matches. For example, acronyms are normally in up-
per case, while the full name is usually in lowercase having sometimes the
first letter of each word (or only the first word) in uppercase. So, instead of
using a full case sensitive grep, we might think on performing a case sensi-
tive grep for the acronyms and a case insensitive grep for the disease words
using the -i option:

$ grep -e 'MH' -e 'MHS' chebi_27732.txt
$ grep -i -e 'malignant hyperthermia' chebi_27732.txt

The equivalent long form to the -i option is --ignore-case. We should
note that each execution of grep will produce two separate lists of matching
lines that might be overlapped.

Alternatively, we can also convert it to just one case sensitive grep, if we
are sure that Malignant hyperthermia is the only alternative case to malignant
hyperthermia present in the text. So, we can add it as another pattern:

$ grep -e 'Malignant hyperthermia' -e 'malignant ↷

hyperthermia' -e 'MH' -e 'MHS' chebi_27732.txt

Number of matches

To be sure that we are not losing any match, we can count the number of
matching lines for both cases. First we execute a case insensitive grep and
then we execute a case sensitive grep, both using the -c option:

$ grep -c -i 'malignant hyperthermia' chebi_27732.txt
$ grep -c -e 'malignant hyperthermia' -e 'Malignant ↷

hyperthermia' chebi_27732.txt

The equivalent long form to the -c option is --count.
In our case, the output should show 100 and 98 matching lines for the

insensitive and sensitive patterns, respectively.
This means that there is two lines that were not caught by the case sen-

sitive pattern. To identify them, we can manually analyze each of the 100
matching lines one by one. But the goal of this book is exactly avoiding these
type of tedious tasks. One thing we can do to solve this issue is to find from
the case insensitive matches the one that do not match the case sensitive
patterns.

4.1 Pattern Matching 67

Invert match

Fortunately, the grep command has the -v option that inverts the matching
and returns the lines of text that do not contain any matching. The equivalent
long form to the -v option is --invert-match.

Thus, if we apply the inverted match with the case sensitive patterns to
the output given by the case insensitive matching, we will get our outlier
mention:

$ grep -i 'malignant hyperthermia' chebi_27732.txt | ↷

grep -v -e 'Malignant hyperthermia' -e 'malignant ↷

hyperthermia'

From the output, we can easily identify the missing matching lines:

...gene are associated with Malignant Hyperthermia (MH)
and...

We were missing the case where both words have the first letter in uppercase.
Thus, to obtain all the matching lines in a case sensitive match we just

have to include the missing match as another pattern:

$ grep -c -e 'malignant hyperthermia' -e 'Malignant ↷

hyperthermia' -e 'Malignant Hyperthermia' ↷

chebi_27732.txt

File Differences

Another alternative to compare different matches, is to use the diff com-
mand that receives as input two files and identifies their differences. So, we
can create two auxiliary files and then apply the diff to them:

$ grep -i 'malignant hyperthermia' chebi_27732.txt > ↷

insensitive.txt
$ grep -e 'Malignant hyperthermia' -e 'malignant ↷

hyperthermia' chebi_27732.txt > sensitive.txt
$ diff sensitive.txt insensitive.txt

The output should be the same text.
A problem that may occur with case sensitive matching is that some

acronyms are defined with lowercase letters in the middle, such as ChEBI,
and humans are not consistent with the way they mention them. The same
acronym may be mentioned in their original form or with all letters in upper-
case, or just some of them. Moreover, these inconsistent mentions sometimes
may even be found in the same publication. We hope not in this book! ⌣̈

68 4 Text Processing

Evaluation metrics

These inconsistencies made by humans when mentioning case sensitive ex-
pressions, is one of the reasons that most online search engines use case in-
sensitive searches as default. This type of approach favors recall, while case
sensitive search favor precision 1.

Recall is the proportion of the number of correct matches found by our tool
over the total number of correct mentions in the texts (found or not found).
Case insensitive searches avoid missing mentions, so they favor recall.

Precision is the proportion of the number of correct matches found by
our tool over the total number of matches found (correct or incorrect). Case
sensitive searches avoid incorrect matches, so they favor precision.

Normally, there is a trade-off between precision and recall. Using a tech-
nique that improves precision, most of the times, will decrease recall, and
vice-versa. To know how good the trade-off is, we can use the F-measure,
which is the harmonic average of the precision and recall 2.

Word Matching

Acronyms (or terms) may also appear inside common words or longer
acronyms. For example, when searching for MH, the word victimhood will
produce a match:

$ echo "victimhood" | grep -i 'MH'

The problem with victimhood could be easily solved by using case sensitive
matching, but not for a longer acronym. For example, the acronym NEDMHM
for neurodevelopmental disorder with midbrain and hindbrain malformations
will produce a case sensitive match:

$ echo "NEDMHM" | grep 'MH'

One way to address this problem is to use the -w option of grep to only
match entire words, i.e. the match must be preceded and followed by char-
acters that are not letters, digits, or an underscore (or be at the beginning
or end of the line). The equivalent long form to the -w option is --word-
regexp.

Using this option, neither victimhood or NEDMHM will produce a match:

$ echo "victimhood" | grep -w -i 'MH'
$ echo "NEDMHM" | grep -w -i 'MH'

Word matching improves precision but decreases recall, since we may miss
some less common acronyms that we are not aware of, but are still relevant

1 https://en.wikipedia.org/wiki/Precision_and_recall
2 https://en.wikipedia.org/wiki/F1_score

https://en.wikipedia.org/wiki/Precision_and_recall
https://en.wikipedia.org/wiki/F1_score

4.2 Regular Expressions 69

for our study. For example, consider that we may also be interested in the
following acronyms:

MHE : acronym for malignant hyperthermia equivocal
MHN : acronym for malignant hyperthermia normal

If we apply word matching, we will not get a match, since both exact
matches are followed by a letter:

$ echo "MHE and MHN" | grep -w -i 'MH'

These are not trivial problems to solve by exact pattern matching, we may
need regular expressions to address some of these issues more efficiently.

4.2 Regular Expressions

When dealing with natural language text we may need more flexibility than
the one provided by exact matching. Regular expressions are an efficient
tool to extend exact matching with flexible patterns, that may find different
matches. As an example, we may be interested in finding all the mentions
of the acronym MHS or MHN in a text. For doing that, regular expressions
provide the alternation operator that helps us to solve this issue easily by
specifying multiple alternatives to match in a specific part of the pattern, in
this case an S or an N as the last character.

Regular expressions can be better understood by clearly separating three
distinct components:

input : any string where we want to find something
pattern : a string that specifies what we are looking for
match : a fragment of the input (a substring) where the pattern can be

found

In our examples, the input is the text file chebi_27732.txt, but it can be the
amino acid sequences that we previously extracted from the UniProt file en-
tries. Until now the pattern has represented an exact string to look for, where
each match is an exact replica of the pattern occurring at a given position of
the input string. When using regular expressions, the pattern contains spe-
cial characters, whose purpose are not to directly match with the input but
instead have a special meaning. These special characters represent operators
that specify which different types of strings we want to find in the input. For
example, strings that start with MH and end with S or an N. By using regular
expressions, the matches are not replicas of the pattern, they can be different
strings as long as they satisfy the specified pattern.

70 4 Text Processing

Extended syntax

The grep command allows us the possibility to include regular expression
operators in the input pattern. grep understands two different versions of
regular expression syntax: basic and extended 3. We will use the extended
syntax for two reasons: (i) the basic does not support relevant operators,
such as alternation; (ii) and to clearly differentiate exact matching from reg-
ular expression matching. Thus, we will start to use the -E option, which
makes the command interpret the pattern as an extended regular expres-
sion. The equivalent long form to the -E option is --extended-regexp.
We should note that this option does not affects the matching when using
a pattern without any regular expression operator, such as MH. For example,
the following commands will produce the same results:

$ echo -e 'MHS\nMHN' | grep 'MH'
$ echo -e 'MHS\nMHN' | grep -E 'MH'

Note, that we use the -e option so the echo command interpret the \n
characters as a newline. Thus, the echo command outputs two lines, that
are given as input to the grep command. We should note that the grep
command filters lines.

4.2.1 Alternation

The first regular expression operator we will test is the alternation, which
we introduced above. An alternation is represented by the bar character (|)
that specifies a pattern where any match must include either the preceding or
following characters. The preceding and following characters can be enclosed
within parentheses to better specify the scope of the alternation operator. For
example, the pattern for finding strings that start with MH and end with S or
an N can be written as:

$ echo -e 'MHS\nMHN' | grep -E 'MH(S|N)'

We can also use multiple patterns using the -E option:

$ echo -e 'MHS\nMHN' | grep -E -e 'MH(S|X)' -e 'MH(X|N)'

Basic syntax

If we use the basic regular expression syntax no match will be found, since
the alternation operator is not supported:

3 https://www.regular-expressions.info/posix.html

https://www.regular-expressions.info/posix.html

4.2 Regular Expressions 71

$ echo -e 'MHS\nMHN' | grep 'MH(S|N)'

We will have a match only if the | and the parentheses are in the input
string, since it is not interpreted as an operator:

$ echo -e 'MH(S|N)' | grep 'MH(S|N)'

Scope

To better understand the scope of an alternation, we can remove the paren-
theses from the pattern and add the -w option:

$ echo -e 'MHS\nMHN' | grep -w -E 'MHS|N'

We only get the first line. This is explained because the alternation operator
is applied to all the preceding characters, i.e. the grep will search for the
MHS word or the N word. If we add a single N to the input string we already
get another match:

$ echo -e 'MHS\nN' | grep -w -E 'MHS|N'

We can also move the opening parenthesis one character to the left:

$ echo -e 'MHS\nMHN' | grep -E 'M(HS|N)'

Only MHS is now displayed, since the alternative now represents MN without
the H.

Multiple alternatives

We are not limited to two alternatives, we can have multiple | operators in
a pattern. For example, the following command will find any of the three
acronyms MHS, MHE or MHN:

$ echo -e 'MHS\nMHN\nMHE' | grep -E 'MH(S|N|E)'

We can now transform our previous grep command with multiple case
sensitive patterns:

$ grep -c -e 'Malignant hyperthermia' -e 'Malignant ↷

Hyperthermia' -e 'malignant hyperthermia' ↷

chebi_27732.txt

in a grep command with a single pattern using alternation:

$ grep -c -E '(M|m)alignant (H|h)yperthermia' ↷

chebi_27732.txt

And we will obtain the same 100 matching lines.

72 4 Text Processing

4.2.2 Multiple characters

A useful regular expression feature is that we can use the dot character (.) to
represent any character, so if we want to find all the acronyms that start with
MH we can execute the following command:

$ grep -o -w -E 'MH.' chebi_27732.txt | sort -u

We should note that we use the -o option of the command grep so it just dis-
plays the matches and not all the line that includes the match. The equivalent
long form to the -o option is --only-matching.

The output will be the following three-character lines:

MH
MH)
MH,
MH.
MH1
MH2
MHE
MHN
MHS

The -o option also solves the problem of counting the total number of
matches, and not just the number of lines with a match:

$ grep -o -w -E 'MH.' chebi_27732.txt | wc -l
$ grep -c -w -E 'MH.' chebi_27732.txt

The output will show that 164 matches were found in 47 lines. The -c option
overrides the -o option, i.e. if we use both in the same grep the output will
be just the number of lines.

If we really want to match only the dot character, we have to precede it
with a backslash character (\):

$ grep -o -w -E 'MH\.' chebi_27732.txt | sort -u

Now only the MH. will be displayed.
We can check that there are some matches that are not really acronyms,

such as MH) and MH,.

Spaces

We should note that MH appears because the space character can also be
matched. For example, the following text includes a word match with MH
since the parenthesis is considered a word delimiter character (not a letter,
digit or underscore) :

... susceptible to MH (MHS) ...

4.2 Regular Expressions 73

On the other hand, the following text does not include a word match with
MH :

... markers and MH susceptibility ...

Thus, what we really want is matches where the third character is a letter or
a numerical digit.

Sometimes, the text includes other characters that also represent horizon-
tal or vertical space in typography, such as the tab character. All these char-
acters are known as whitespaces and can be represented by the expression
\s in a pattern 4. The following command demonstrates that both the space
and the tab characters are matched by \s:

echo -e 'space: :\ntab:\t:' | grep -E '\s'

Groups

Fortunately, the regular expressions include the group operator that let us
easily specify a set of characters. A group operator is represented by a set of
characters enclosed within square brackets. Any of the enclosed characters
can be matched.

For example, the previous command to find any of the three acronyms can
be replaced by:

$ echo -e 'MHS\nMHN\nMHE' | grep -E 'MH[SNE]'

We should note that only one of the three letters, S, N or E will be matched
in the input string.

Ranges

Still, this is not solving our need to only match letters or digits. However, we
can also specify characters ranges with the dash character (-). For example,
to find all the acronyms that start with MH followed by any alphabet letter:

$ grep -o -w -E 'MH[A-Z]' chebi_27732.txt | sort -u

This will result in only three acronyms:

MHE
MHN
MHS

We should note that A-Z represents any alphabet letter in uppercase, a
lowercase letter will not be matched:

4 https://en.wikipedia.org/wiki/Whitespace_character

https://en.wikipedia.org/wiki/Whitespace_character

74 4 Text Processing

$ echo -e 'MHS\nMHs' | grep -E 'MH[A-Z]'

The output will be only one line:

MHS

If we intend to keep the usage of a case sensitive grep and at the same
time find lowercase matches, then we need to add the a-z range:

$ echo -e 'MHS\nMHs' | grep -E 'MH[A-Za-z]'

The output will be both lines:

MHS
MHs

We should note that the dot character inside a range represents itself and
not any character:

$ echo -e 'MHS\nMH.' | grep -E 'MH[.]'

The output will be only the last line:

MH.

Additionally, to include the acronyms that end with a numerical digit we
need to add the 0-9 range:

$ grep -o -w -E 'MH[A-Z0-9]' chebi_27732.txt | sort -u

Finally, we have the correct list of all three character acronyms starting
with MH:

MH1
MH2
MHE
MHN
MHS

Negation

Another frequent case is the need to match any character with a few excep-
tions. For example, if we need to find all the matches that start with MH fol-
lowed by any character except an alphabet letter. Fortunately, we can use the
negation feature within a group operator. The negation feature is represented
by the circumflex character (^) right next to the left bracket. The negation
means that all the characters and ranges enclosed within the brackets are the
ones that cannot be matched. Thus, a solution to the above example is to add
the A-Z range after the circumflex:

$ grep -o -w -E 'MH[^A-Z]' chebi_27732.txt | sort -u

4.2 Regular Expressions 75

We can see that all of the three acronyms MHS, MHE or MHN will be
missing from the output:

MH
MH)
MH,
MH.
MH1
MH2

If we do not want the MH acronym, we can add the space character to
the negative group:

$ grep -o -w -E 'MH[^A-Z]' chebi_27732.txt | sort -u

The output should now contain one less acronym:

MH)
MH,
MH.
MH1
MH2

4.2.3 Quantifiers

Above we were interested in finding acronyms composed of exactly three
characters. However, we may need to find all acronyms that start with MH
independently of their length. This functionality is also available in regular
expressions using the quantifiers operators.

Optional

The simplest quantifier is the optional operator that is specified by an item
followed by the question mark character (?). The item can be a character,
an operator or a sub-pattern enclosed by parentheses. That item becomes
optional for matching, i.e. a match can either contain that item or not.

For example, to find all the acronyms starting with MH and followed by
one alphabetic letter or none:

$ grep -o -w -E 'MH[A-Z0-9]?' chebi_27732.txt | sort -u

Given that the third character is optional the output will include the two-
character acronym MH, but not the MH match:

MH
MH1

76 4 Text Processing

MH2
MHE
MHN
MHS

We can add the space character to the group:

$ grep -o -w -E 'MH[A-Z0-9]?' chebi_27732.txt | sort -u

Now the output includes the two-character acronym MH and the MH
match:

MH
MH
MH1
MH2
MHE
MHN
MHS

Multiple and optional

To find all the acronyms independently of their length, we can use the asterisk
character (*). The preceding item becomes optional and can be repeated
multiple times. For example, to find all the acronyms starting with MH and
which may be followed any number of alphabetic letters or numeric digits:

$ grep -o -w -E 'MH[A-Z0-9]*' chebi_27732.txt | sort -u

The output now includes the four-character acronym MHS1:

MH
MH1
MH2
MHE
MHN
MHS
MHS1

We should note that the grep command uses a greedy approach, i.e. it
will try to match as many characters as possible. For example, the following
command will match MH1 and not MH:

$ echo 'MH1' | grep -o -E 'MH[0-9]*'

4.2 Regular Expressions 77

Multiple and compulsory

To make the preceding item compulsory and able to repeat it multiple times,
we may replace the asterisk by the plus character (+). For example, the fol-
lowing pattern will find all the acronyms starting with MH followed by at
least one alphabetic letter or numeric digit:

$ grep -o -w -E 'MH[A-Z0-9]+' chebi_27732.txt | sort -u

We should note that the output does not contain the two character
acronym MH:

MH1
MH2
MHE
MHN
MHS
MHS1

All options

The above quantifiers are the most popular, but the functionality of all of
them can be reproduced by using curly braces to specify the minimal and
maximum number of occurrences. The item is followed by an expression of
the type {n,m} where n and m are to be replaced by a number specifying the
minimum and maximum number of occurrences, respectively. n and m may
also be omitted, which means that no minimum or maximum limit is to be
imposed.

Using curly brackets, the question mark character (?) can be replaced by
{0,1}. Thus, the following two patterns are equivalent:

$ grep -o -w -E 'MH[A-Z0-9]?' chebi_27732.txt | sort -u
$ grep -o -w -E 'MH[A-Z0-9]{0,1}' chebi_27732.txt | sort ↷

-u

The asterisk character (*) can be replaced by {0,}. Thus, the following
two patterns are equivalent:

$ grep -o -w -E 'MH[A-Z0-9]*' chebi_27732.txt | sort -u
$ grep -o -w -E 'MH[A-Z0-9]{0,}' chebi_27732.txt | sort ↷

-u

The plus character (+) can be replaced by {1,}. Thus, the following two
patterns are equivalent:

$ grep -o -w -E 'MH[A-Z0-9]+' chebi_27732.txt | sort -u
$ grep -o -w -E 'MH[A-Z0-9]{1,}' chebi_27732.txt | sort ↷

-u

78 4 Text Processing

On the other hand using {1,1} is the same as not having any operator.
Thus, the following two patterns are equivalent:

$ grep -o -w -E 'MH[A-Z0-9]' chebi_27732.txt | sort -u
$ grep -o -w -E 'MH[A-Z0-9]{1,1}' chebi_27732.txt | sort ↷

-u

The previous commands display the all the three-character acronyms:

MH1
MH2
MHE
MHN
MHS

For example, if we are looking for acronyms with exactly 4 characters then
we can apply the following pattern:

$ grep -o -w -E 'MH[A-Z0-9]{2,2}' chebi_27732.txt | sort ↷

-u

We should note that we use 2 as both the minimum and maximum since MH
already count as 2 characters.

The output of the previous command is now the four-character acronym:

MHS1

4.3 Position

Sometimes besides the match, we are also interested in limiting the matches
to specific parts of the input string. For example, to identify start and stop
codons in a protein sequence, we need to limit the matches to the beginning
or the end of the sequence. In text, we may for example be interested in
lines starting with a name of a disease. To take in account the position of a
match, regular expressions patterns can start with the circumflex character
(^) and/or end with the dollar sign character ($).

If the pattern starts with a circumflex then only matches at the beginning
of the line will be considered. On the other hand, if the pattern ends with a
dollar then only matches at the end of the line will be considered.

Beginning

For example, if we are looking for lines starting with Malignant Hyperthermia
we can use the following pattern:

4.3 Position 79

$ grep -E '^(M|m)alignant (H|h)yperthermia' chebi_27732. ↷

txt

The output will include the list of lines beginning with a mention to Ma-
lignant Hyperthermia:

...
Malignant hyperthermia (MH) is a potentially fatal

autosomal ...
Malignant hyperthermia (MH) is a pharmacogenetic

disorder ...

To check how many of the matching lines were filtered, we can count the
number of occurrences when using the circumflex and when not:

$ grep -c -E '^(M|m)alignant (H|h)yperthermia' ↷

chebi_27732.txt
$ grep -c -E '(M|m)alignant (H|h)yperthermia' ↷

chebi_27732.txt

The output will show that only 20 of the 100 matches were considered.

Ending

If we are looking for lines ending with a mention to Malignant Hyperthermia,
then we can add the dollar character to the end of the pattern:

$ grep -E '(M|m)alignant (H|h)yperthermia.$' chebi_27732 ↷

.txt

To allow a punctuation character before the end of the line, we added the
dot character before the dollar character in the pattern. The dot character
matches any character, including the dot itself.

The output will be the list of lines ending with a mention to Malignant
Hyperthermia:

...
Mutations in the ryanodine receptor gene in central

core disease and malignant hyperthermia.
Detection of a novel mutation at amino acid position

614 in the ryanodine receptor in malignant
hyperthermia.

Novel mutations at a CpG dinucleotide in the ryanodine
receptor in malignant hyperthermia.

We can check how many lines were filtered by using again the -c option:

$ grep -c -E '(M|m)alignant (H|h)yperthermia.$' ↷

chebi_27732.txt

80 4 Text Processing

$ grep -c -E '(M|m)alignant (H|h)yperthermia' ↷

chebi_27732.txt

The output will show that only 15 of the 100 matches were at the end of the
line.

Near the end

Sometimes we do not want the mention ending exactly at the last character.
We may be more flexible and allow a following expression, or a given number
of characters. For example, to allow 10 other characters between the end of
the line and the mention of Malignant Hyperthermia, we can add a quantifier
to the dot operator:

$ grep -c -E '(M|m)alignant (H|h)yperthermia.{0,10}$' ↷

chebi_27732.txt

The output will show that we have 20 matches.
If we remove the -c option, we will be able to check that words, such

as families and patients, are now allowed to appear between the mention of
Malignant Hyperthermia and the end of the line:

...
Novel mutations in C-terminal channel region of the

ryanodine receptor in malignant hyperthermia
patients.

...
Novel missense mutations and unexpected multiple

changes of RYR1 gene in 75 malignant hyperthermia
families.

...

Word in between

To allow a word in between, independently of its length, we can add to the
pattern an optional sequence of non-space characters (the word) preceded
by a space:

$ grep -c -E '(M|m)alignant (H|h)yperthermia([^]*)?.$'

↷

chebi_27732.txt

The output will show that we have 24 matches. We should note that the [^]
operator avoids having two words.

If we remove the -c option, we will be able to check that lengthy words
(with more than 10 characters), such as susceptibility, are now allowed to

4.3 Position 81

appear between the mention of Malignant Hyperthermia and the end of the
line:

...
Ryanodine receptor gene point mutation and malignant

hyperthermia susceptibility.
...

Full line

If we want lines that start with a mention to Malignant Hyperthermia and end
with an acronym, MH or MHS, then we can execute two grep commands.
The first gets the lines starting with Malignant Hyperthermia and the next
filters the output of the latter with lines ending with an acronym:

$ grep -E '^(M|m)alignant (H|h)yperthermia' chebi_27732. ↷

txt | grep -w -E 'MHS?.$'

Alternatively, we can add both the circumflex and dollar operators to the
same pattern. However, we cannot forget to add .* to match anything in
between them, since we are asking full line matches:

$ grep -w -E '^(M|m)alignant (H|h)yperthermia.*MHS?.$'

↷

chebi_27732.txt

We can see that both commands match all the text of the abstract since
each abstract is stored in a single line of the file:

Malignant hyperthermia (MH) is a pharmacogenetical
complication ... as for genetic diagnosis of MH.

Malignant hyperthermia susceptibility (MHS) is a
subclinical pharmacogenetic disorder ... been tested
positive for MHS.

This demonstrates the problem of tokenization, since usually what we really
need is to match a full sentence or a phrase. And in that case each line should
represent a sentence or phrase from the abstract.

Match position

For more advanced processing, we may be interested in knowing the exact
position of the matches in a given line. This can be done by using the -b
option of grep, which provides the number of bytes in the line before the
start of the match:

$ echo 'MHS MHN MHE' | grep -b -o -w -E 'MH[SNE]'

82 4 Text Processing

The equivalent long form to the -b option is --byte-offset.
The output shows the list of matches preceded by their position:

0:MHS
4:MHN
8:MHE

The same result happens if the input is given in multiple lines:

$ echo -e 'MHS\nMHN\nMHE' | grep -b -o -w -E 'MH[SNE]'

We have the exact same result because the newline character counts the same
as the space.

4.4 Tokenization

As we have shown in the previous section, sometimes we need to work at the
level of a sentence and not use a full document as the input string. Tokeniza-
tion is a Natural Language Processing (NLP) task that aims at identifying
boundaries in the text to fragment it into basic units called tokens. These
tokens can be sentences, phrases, multi-word expressions, or words.

Character delimiters

In most languages, some specific characters can be considered as accurate
boundaries to fragment text into tokens. For example, the space character
to identify words; the period (.), the question mark (?) and the exclamation
mark (!) to identify the ending of a sentence; and the comma (,), the semi-
colon (;), the colon (:) or any kind of parenthesis to identify a phrase within a
sentence. However, this problem may be more complex in languages without
explicitly delimiters, such as Chinese [Wu and Fung, 1994].

A common approach to tokenization is to use regular expressions to re-
place these delimiters by newline characters. This will result in a token per
line. For example, we can replace the characters specifying the end of a sen-
tence with a newline by using the tr command and then count the number
of lines:

$ tr '[.!?]' '\n' < chebi_27732.txt | wc -l

We get 1618 lines from the original 255 lines:

$ wc -l chebi_27732.txt

Unfortunately, this is not just so simple. We need to analyze the output:

$ tr '[.!?]' '\n' < chebi_27732.txt | less

4.4 Tokenization 83

Wrong tokens

We can check that: i) many lines are empty because an extra newline char-
acter will be added to the last sentence, and ii) the dot character is also used
as a decimal mark in a number, then some sentences are split in multiple
lines because they have decimal number in them. For example, the original
sentence:

These 10 mutations account for 21.9% of the North
American MH-susceptible population

is split in two lines:

These 10 mutations account for 21
9% of the North American MH-susceptible population

String Replacement

This means that looking at just one character is not enough, we need some
context. For performing this, we will use the sed command that we may
consider as a more powerful version of the tr command. The sed command
is a stream editor that can receive as input a string and perform basic text
transformations, such as replace one expression by another, that are available
in almost all text editors. For example, we can use a simple sed to convert
every mention of caffeine by its ChEBI identifier:

$ sed -E 's/caffeine/CHEBI:27732/gi' chebi_27732.txt

The -E option allow us to use extended regular expressions, like we used
before in grep. The s option has the following syntax 's/FIND/REPLACE
/FLAGS', where: FIND is the pattern to find in the input string; REPLACE
the expression to replace the matches; FLAGS are multiple options, such as
g to replace all matches in each line and not just the first one, and i to be
case insensitive.

For example, the original fragment of text:

... link between the caffeine threshold and tension ...

will be converted to:

... link between the CHEBI:27732 threshold and tension
...

Multi-character delimiters

To replace the delimiter characters by a newline when followed by at least
one space character, we can use the following command:

84 4 Text Processing

$ sed -E 's/[.!?] +/\n/g' chebi_27732.txt

We should note that by making compulsory a space character, we avoid: i)
empty lines by splitting a sentence that is already at the end of the line (as-
suming there are no ghost space characters at the end of each line), and
ii) decimal markers because they are followed by numerical digits and not
spaces.

We now get 1092 lines from the original 255 lines:

$ sed -E 's/[.!?] +/\n/g' chebi_27732.txt | wc -l

Keep delimiters

The previous sed command is removing the delimiter characters from the
text, and this may cause other problems. A better solution is to keep the
delimiter characters and just add the newline. The sed command allows us to
keep each match for a specific part of the pattern (sub-pattern) by enclosing
it within parentheses. To include the match of a sub-pattern in the replace
expression, we can use the backslash and its numerical order. Thus, we can
improve our sed command by using this technique so we do not remove any
delimiter character:

$ sed -E 's/([.!?])(+)/\1\n\2/g' chebi_27732.txt

The \1 represents the match for the sub-pattern ([.!?]), and the \2 rep-
resents the match for the sub-pattern (+). This means that a newline char-
acter is inserted right after each delimiter character found, and keeping the
space characters.

For example, the original fragment of text:

... muscle relaxants. To date, ...

will be converted to:

... muscle relaxants.
To date, ...

However, other common issues may still persist:

... bulk.<h4>Methods</h4>Fetal ...

... sequencing.<h4>Results</h4>Whole ...

These sentences include a HTML elements.
To minimize this issue, we can change the pattern to add the option of &

character besides the space:

$ sed -E 's/([.!?])([&]+)/\1\n\2/g' chebi_27732.txt | ↷

wc -l

4.4 Tokenization 85

We now get 1179 lines, i.e. this pattern is more flexible and was able to split
more 87 sentences. expr1179−1092

This does not mean that is free of errors. It is almost impossible to derive
a rule that covers all the possible typos humans can produce.

Fig. 4.1 Identifying multiple spaces at the beginning of a sentence using regular expres-
sions (Adapted from: https://en.wikipedia.org/wiki/Regular_expression)

As an example, the Figure 4.1 show a complex pattern adapted from
Wikipedia. The pattern is equivalent to \. {2,}[A-Z], and identifies mul-
tiples spaces at the beginning of a sentence. The pattern requires at least two
spaces to be matched, but only after a period and before an uppercase letter.

Sentences file

Using our previous pattern, we can update our script named gettext.sh to
provide the text already split in sentences by adding the sed command:

1 ID=$1 # The CHEBI identifier given as input is renamed ↷

to ID
2 xmllint --xpath "//*[local-name()='title' or local- ↷

name()='comment']/text()" chebi_$ID_*.rdf | \
3 sed -E 's/([.!?])([&]+)/\1\n\2/g'

To save the output as a file named chebi_27732_sentences.txt, we only need
to add the redirection operator:

$./gettext.sh 27732 > chebi_27732_sentences.txt

Each line of the file chebi_27732_sentences.txt represents a sentence.

https://en.wikipedia.org/wiki/Regular_expression

86 4 Text Processing

4.5 Entity recognition

To select the sentences with one of our acronyms, we can use the grep com-
mand and our sentences file:

$ grep -w -E 'MH[SNE]?' chebi_27732_sentences.txt

The output will only include matching sentences:

...
Interestingly, the data suggest a link between the

caffeine threshold and tension values and the MH/CCD
phenotype.

Alternatively, we can use the -n option to get the number of the line and
the -o option to get the acronym matched :

$ grep -n -o -w -E 'MH[SNE]?' chebi_27732_sentences.txt

The equivalent long form to the -n option is --line-number. The output
should be something like this:

...
1129:MH
1131:MH
1132:MH

We can also add the -b option to get the exact position of the acronym
matched:

$ grep -b -n -o -w -E 'MH[SNE]?' chebi_27732_sentences. ↷

txt

The output now contains the number of the line, the character position,
and the match:

...
1129:174908:MH
1131:175340:MH
1132:175666:MH

We can now make a script that receives a pattern as argument and the
input text as the standard input, to display the line numbers and the matches
in a TSV format. Thus, let us create a script file named getentities.sh with the
following lines:

1 PATTERN=$1
2 grep -n -o -w -E $PATTERN | \
3 tr ':' '\t'

Again we should not forget to save the file in our working directory, and add
the right permissions with chmod, as we did with our scripts in the previous
chapter.

4.6 Pattern File 87

The first line stores the pattern given as argument in the variable PATTERN
. The grep command finds the matches and the tr command replaces each
colon by a tab character to produce TSV content.

We can now execute the script giving the pattern as argument and the
sentences file as standard input:

$./getentities.sh 'MH[SNE]?' < chebi_27732_sentences.↷

txt

The output should be something like this:

...
1129 MH
1131 MH
1132 MH

We should note that now we have the values separated by a tab character,
i.e. the output is in TSV format.

The output can also be saved as a TSV file that we can open directly in our
preferred spreadsheet application. For example, to save it as chebi_27732.tsv,
we only need to add the redirection operator:

$./getentities.sh 'MH[SNE]?' < chebi_27732_sentences. ↷

txt > chebi_27732.tsv

Select the sentence

If we want to analyze a specific matched sentence, we can use a text editor
and go to that line number. A more efficient alternative is to use the print p
option of sed to output a given line number. For example, to check the MHS
match at line 2:

$ sed -n '2p' chebi_27732_sentences.txt

Now we can easily check the context of the match:

... in susceptible people (MHS) by volatile ...

4.6 Pattern File

The script created in the previous section only accepts one pattern, however
we may need to recognize different entities, or different mentions of the
same entity, such as the official name, possible synonyms, and the acronyms.
Fortunately, grep allows us to include a list of patterns directly from a file

88 4 Text Processing

using the -f option. The equivalent long form to the -f option is --file
=FILE. For example, we can create a text file named patterns.txt with the
following three patterns:

(M|m)alignant (H|h)yperthermia
MH[SNE]?
(C|c)affeine

Then we can execute the previous grep but using multiple patterns spec-
ified in the pattern file:

$ grep -n -o -w -E -f patterns.txt chebi_27732_sentences ↷

.txt

Analyzing the output, we can check that the same sentences may include
different entities:

...
1131:caffeine
1132:caffeine
1132:MH

We can now update our script named getentities.sh to receive as input not
a single pattern but the filename where multiple patterns can be found.

1 PATTERNS=$1
2 grep -n -o -w -E -f $PATTERNS | \
3 tr ':' '\t'

We can execute the script giving as argument the file containing the pat-
terns:

$./getentities.sh patterns.txt < chebi_27732_sentences. ↷

txt

To save the output as a file named chebi_27732.tsv, we only need to add
the redirection operator:

$./getentities.sh patterns.txt < chebi_27732_sentences. ↷

txt > chebi_27732.tsv

Using the patterns.txt file is very useful if for example we are not focused
in a single disease, and we want to find any disease mentioned in the text.
In these cases, we have to create a file with the full lexicon of diseases. This
topic will be addressed in the following chapter.

4.7 Relation Extraction

Finding the relevant entities in text is sometimes not enough. We need to
know which sentences may describe possible relationships between those en-
tities, such as a relation between a disease and a compound.

4.7 Relation Extraction 89

This a complex text mining challenge, but a simple approach is to con-
struct a pattern that allow any kind of characters between two entities:

$ grep -n -w -E 'MH[SNE]?.*(C|c)affeine'

↷

chebi_27732_sentences.txt

The following sentence is one of the eight displayed sentences mentioning
a possible relation:

257: ... MHS families were investigated with a caffeine
...

However, we are missing all the sentences that have caffeine first:

$ grep -n -w -E '(C|c)affeine.*MH[SNE]?'
↷

chebi_27732_sentences.txt

We will be able to see that sometimes caffeine comes first:

837: ... caffeine-halothane contracture test were
greater in those who had a known MH ...

1132: ... caffeine threshold and tension values and the
MH ...

Multiple filters

The most flexible approach is use two grep commands. The first selects the
sentences mentioning one of the entities, and the other selects from the pre-
viously selected sentences the ones mentioning the other entity. For example,
we can first search for the acronyms and then for caffeine:

$ grep -n -w -E 'MH[SNE]?' chebi_27732_sentences.txt | ↷

grep -w -E '(C|c)affeine'

This will show all the ten sentences mentioning caffeine and an acronym.

Relation type

If we are interested in a specific type of relationship, we may have an addi-
tional filter for a specific verb. For example, we can add a filter for sentences
with the verb response or diagnosed:

$ grep -n -w -E 'MH[SNE]?' chebi_27732_sentences.txt | ↷

grep -w -E '(C|c)affeine' | grep -w -E 'response| ↷

diagnosed'

We should note that this does not take in account where the verb appears
in the sentence. For example, in the following sentence the verb response
appears first than any of the two entities:

90 4 Text Processing

58: The relationship between the IVCT response and
genotype was ... the number of MHS discordants ...
at 2.0 mM caffeine ...

If the verb needs to appear between the two entities, we have to construct
a pattern that have these words in the middle of them:

$ grep -n -w -E 'MH[SNE]?.*(response|diagnosed).*(C|c)
↷

affeine' chebi_27732_sentences.txt

We can see now that the previous sentence (line 50) is not presented as a
match.

Remove relation types

We may also be interested in ignoring specific type of relations. To do that,
we only need to use the -v (or --invert-match) option. For example, to
ignore sentences with the word response or diagnosed:

$ grep -n -w -E 'MH[SNE]?' chebi_27732_sentences.txt | ↷

grep -w -E '(C|c)affeine' | grep -v -w -E 'response ↷

|diagnosed'

All the resulting sentences do not mention response or diagnosed.

4.8 Further Reading

If we want to have a deeper knowledge about text processing tasks and chal-
lenges, we may be interested in reading some chapters of the book enti-
tled Speech and language processing [Jurafsky and Martin, 2014]. The book is
a highly specialized document explaining in full detail the topics here briefly
described.

To have an overview about the state-of-art in text processing tools using
biomedical literature, we should consider reading a recent and comprehen-
sive survey [Lamurias and Couto, 2019].

Chapter 5
Semantic Processing

In the previous chapter we were able to automatically process text by rec-
ognizing a limited set of entities. This chapter will introduce the world of
semantics, and present step-by-step examples to enhance text and data pro-
cessing by using semantics. The goal is to equip the reader with the basic
set of skills to explore semantic resources that are nowadays available using
simple shell script commands.

5.1 Classes

In the previous chapters we searched for mentions of caffeine and malignant
hyperthermia in text. However, we may miss related entities that may also
be of our interest. These related entities can be found in semantic resources,
such as ontologies. The semantics of caffeine and malignant hyperthermia are
represented in ChEBI and DO ontologies, respectively.

OWL files

Thus, we can start by retrieving both ontologies, i.e. their OWL files.

$ curl -L -O http://purl.obolibrary.org/obo/doid/ ↷

releases/2021-03-29/doid.owl
$ curl -L -O http://purl.obolibrary.org/obo/chebi/198/↷

chebi_lite.owl

The -O option saves the content to a local file named according to the name
of the remote file, usually the last part of the URL. The equivalent long form
to the -O option is --remote-name. The option -L enables the curl com-

91

92 5 Semantic Processing

mand to follow a URL redirection 1. The equivalent long form to the -L
option is --location.

The previous commands will create the files chebi_lite.owl and doid.owl,
respectively.

We should note that these links are for the specific releases used in this
book. Using another release may change the output of the examples pre-
sented in this chapter.

To retrieve the most recent release we should use the following links:

http://purl.obolibrary.org/obo/doid.owl
http://purl.obolibrary.org/obo/chebi/chebi_lite.owl

To find other ontology links search for them on the BioPortal 2 or on the
OBO Foundry 3 webpages. Alternatively, we can also get the OWL files from
the book file archive 4.

Class label

Both OWL files use the XML format syntax. Thus, to check if our entities are
represented in the ontology, we can search for ontology elements that contain
them using a simple grep command:

$ grep '>malignant hyperthermia<' doid.owl
$ grep '>caffeine<' chebi_lite.owl

For each grep the output will be the line that describes the property label
(rdfs:label), which is inside the definition of the class that represents the
entity:

<rdfs:label rdf:datatype="http://www.w3.org/2001/
XMLSchema#string">malignant hyperthermia</rdfs:label
>

<rdfs:label rdf:datatype="http://www.w3.org/2001/
XMLSchema#string">caffeine</rdfs:label>

Class definition

To retrieve the full class definition, a more efficient approach is to use the
xmllint command, which we already used in previous chapters:

$ xmllint --xpath "//*[local-name()='label' and text()=' ↷

malignant hyperthermia']/.." doid.owl

1 https://en.wikipedia.org/wiki/URL_redirection
2 http://bioportal.bioontology.org/
3 http://www.obofoundry.org/
4 http://labs.rd.ciencias.ulisboa.pt/book/

https://en.wikipedia.org/wiki/URL_redirection
http://bioportal.bioontology.org/
http://www.obofoundry.org/
http://labs.rd.ciencias.ulisboa.pt/book/

5.1 Classes 93

The XPath query starts by finding the label that contains malignant hyperther-
mia and then .. gives the parent element, in this case the Class element.

From the output we can see that the semantics of malignant hyperthermia
is much more than its label:

<owl:Class rdf:about="http://purl.obolibrary.org/obo/
DOID_8545">

<rdfs:subClassOf rdf:resource="http://purl.obolibrary.
org/obo/DOID_0050736"/>

<rdfs:subClassOf rdf:resource="http://purl.obolibrary.
org/obo/DOID_66"/>

<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="http://purl.obolibrary.
org/obo/IDO_0000664"/>

<owl:someValuesFrom rdf:resource="http://purl.
obolibrary.org/obo/GENO_0000147"/>
</owl:Restriction>

</rdfs:subClassOf>
...
<oboInOwl:hasExactSynonym xml:lang="en">anesthesia

related hyperthermia</oboInOwl:hasExactSynonym>
<oboInOwl:hasExactSynonym xml:lang="en">malignant

hyperpyrexia due to anesthesia</
oboInOwl:hasExactSynonym>

<oboInOwl:hasOBONamespace rdf:datatype="http://www.w3.
org/2001/XMLSchema#string">disease_ontology</
oboInOwl:hasOBONamespace>

<oboInOwl:id rdf:datatype="http://www.w3.org/2001/
XMLSchema#string">DOID:8545</oboInOwl:id>

<oboInOwl:inSubset rdf:resource="http://purl.
obolibrary.org/obo/doid#DO_rare_slim"/>

<oboInOwl:inSubset rdf:resource="http://purl.
obolibrary.org/obo/doid#NCIthesaurus"/>

<rdfs:comment rdf:datatype="http://www.w3.org/2001/
XMLSchema#string">Xref MGI.

OMIM mapping confirmed by DO. [SN].</rdfs:comment>
<rdfs:label rdf:datatype="http://www.w3.org/2001/

XMLSchema#string">malignant hyperthermia</rdfs:label
>

</owl:Class>

A graphical visualization of this class is depicted in Figure 5.1.
For example, we can check that malignant hyperthermia is a subclass of

(specialization) the entries 0050736 and 66. We can directly use the links 5

5 http://purl.obolibrary.org/obo/DOID_0050736

http://purl.obolibrary.org/obo/DOID_0050736

94 5 Semantic Processing

Fig. 5.1 Class description of malignant hyperthermia in the Human Disease Ontology
(Source: http://www.ontobee.org/)

and 6 in our browser to know more about these parent diseases. We will see
that malignant hyperthermia is a special case of a autosomal dominant disease
and of a muscle tissue disease.

We can search for those specific relations between malignant hyperthermia
and the entries 0050736 and 66:

$ xmllint --xpath "//*[local-name()='label' and text()=' ↷

malignant hyperthermia']/..//*[@*[local-name()='

↷

resource' and .='http://purl.obolibrary.org/obo/ ↷

DOID_66' or .='http://purl.obolibrary.org/obo/ ↷

DOID_0050736']]" doid.owl

We added the @*[local-name()='resource'] to extract the URI speci-
fied in an attribute resource of any descendant element //*[...].

The relation specification uses the subClassOf element:

<rdfs:subClassOf rdf:resource="http://purl.obolibrary.
org/obo/DOID_0050736"/>

6 http://purl.obolibrary.org/obo/DOID_66

http://www.ontobee.org/
http://purl.obolibrary.org/obo/DOID_66

5.1 Classes 95

<rdfs:subClassOf rdf:resource="http://purl.obolibrary.
org/obo/DOID_66"/>

We can do the same to retrieve the full class definition of caffeine:

$ xmllint --xpath "//*[local-name()='label' and text()=' ↷
caffeine']/.." chebi_lite.owl

From the output we can see that the types of semantics available for caf-
feine differs from the semantics of malignant hyperthermia, but they still share
many important properties, such as the definition of subClassOf:

<owl:Class rdf:about="http://purl.obolibrary.org/obo/
CHEBI_27732">

<rdfs:subClassOf rdf:resource="http://purl.obolibrary.
org/obo/CHEBI_26385"/>

<rdfs:subClassOf rdf:resource="http://purl.obolibrary.
org/obo/CHEBI_27134"/>

<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="http://purl.obolibrary.
org/obo/RO_0000087"/>

<owl:someValuesFrom rdf:resource="http://purl.
obolibrary.org/obo/CHEBI_25435"/>
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>
...
</rdfs:subClassOf>
<obo:IAO_0000115 rdf:datatype="http://www.w3.org/2001/

XMLSchema#string">A trimethylxanthine in which the
three methyl groups are located at positions 1, 3,
and 7. A purine alkaloid that occurs naturally in
tea and coffee.</obo:IAO_0000115>

<oboInOwl:hasAlternativeId rdf:datatype="http://www.w3
.org/2001/XMLSchema#string">CHEBI:22982</
oboInOwl:hasAlternativeId>

<oboInOwl:hasAlternativeId rdf:datatype="http://www.w3
.org/2001/XMLSchema#string">CHEBI:3295</
oboInOwl:hasAlternativeId>

<oboInOwl:hasAlternativeId rdf:datatype="http://www.w3
.org/2001/XMLSchema#string">CHEBI:41472</
oboInOwl:hasAlternativeId>

<oboInOwl:hasOBONamespace rdf:datatype="http://www.w3.
org/2001/XMLSchema#string">chebi_ontology</
oboInOwl:hasOBONamespace>

<oboInOwl:id rdf:datatype="http://www.w3.org/2001/
XMLSchema#string">CHEBI:27732</oboInOwl:id>

96 5 Semantic Processing

<oboInOwl:inSubset rdf:resource="http://purl.
obolibrary.org/obo/chebi#3_STAR"/>

<rdfs:label rdf:datatype="http://www.w3.org/2001/
XMLSchema#string">caffeine</rdfs:label>

</owl:Class>

Fig. 5.2 Class description of caffeine in ChEBI (Source: http://www.ontobee.org/)

A graphical visualization of this class is depicted in Figure 5.2.
The class caffeine is a specialization of two other entries: 26385 (purine

alkaloid 7), and 27134 (trimethylxanthine 8).
We can search for those specific relations between caffeine and the entries

26385 and 27134:

$ xmllint --xpath "//*[local-name()='label' and text()=' ↷

caffeine']/..//*[@*[local-name()='resource' and .='↷

http://purl.obolibrary.org/obo/CHEBI_26385' or .=' ↷

7 http://purl.obolibrary.org/obo/CHEBI_26385
8 http://purl.obolibrary.org/obo/CHEBI_27134

http://www.ontobee.org/
http://purl.obolibrary.org/obo/CHEBI_26385
http://purl.obolibrary.org/obo/CHEBI_27134

5.1 Classes 97

http://purl.obolibrary.org/obo/CHEBI_27134']]" doid ↷

.owl

The relation specification uses the subClassOf element:

<rdfs:subClassOf rdf:resource="http://purl.obolibrary.
org/obo/CHEBI_26385"/>

<rdfs:subClassOf rdf:resource="http://purl.obolibrary.
org/obo/CHEBI_27134"/>

Related Classes

Fig. 5.3 Related classes of malignant hyperthermia in the Human Disease Ontology
(Source: http://www.ontobee.org/)

Fig. 5.4 Related classes of caffeine in ChEBI (Source: http://www.ontobee.org/)

There are additional subclass relationships that do not represent subsump-
tion (is-a). Figures 5.3 and 5.4 show other related classes of malignant hy-
perthermia and caffeine, respectively.

For example, the relationship between caffeine and the entry 25435 (muta-
gen 9) is defined by the entry 0000087 (has role 10) of the Relations Ontology.
This means that the relationship defines that caffeine has role mutagen.

We can search that specific relation between caffeine and mutagen (CHEBI:25435):

9 http://purl.obolibrary.org/obo/CHEBI_25435
10 http://purl.obolibrary.org/obo/RO_0000087

http://www.ontobee.org/
http://www.ontobee.org/
http://purl.obolibrary.org/obo/CHEBI_25435
http://purl.obolibrary.org/obo/RO_0000087

98 5 Semantic Processing

$ xmllint --xpath "//*[local-name()='label' and text()=' ↷

caffeine']/..//*[@*[local-name()='resource' and .='↷

http://purl.obolibrary.org/obo/CHEBI_25435 ↷

']]/../.." chebi_lite.owl

The specification uses the Restriction element:

<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="http://purl.obolibrary.
org/obo/RO_0000087"/>

<owl:someValuesFrom rdf:resource="http://purl.
obolibrary.org/obo/CHEBI_25435"/>

</owl:Restriction>
</rdfs:subClassOf>

We can now search in the OWL file for the definition of the type of relation
has role (RO:0000087):

$ xmllint --xpath "//*[local-name()='ObjectProperty'][@

↷

*[local-name()='about']='http://purl.obolibrary.org

↷

/obo/RO_0000087']" chebi_lite.owl

The XPath query starts by finding the elements ObjectProperty and then
selects the ones containing the about attribute with the relation URI as
value.

We can check that the relation is neither transitive or cyclic:

<owl:ObjectProperty rdf:about="http://purl.obolibrary.
org/obo/RO_0000087">

<oboInOwl:hasDbXref rdf:datatype="http://www.w3.org
/2001/XMLSchema#string">RO:0000087</
oboInOwl:hasDbXref>

<oboInOwl:hasOBONamespace rdf:datatype="http://www.w3.
org/2001/XMLSchema#string">chebi_ontology</
oboInOwl:hasOBONamespace>

<oboInOwl:id rdf:datatype="http://www.w3.org/2001/
XMLSchema#string">has_role</oboInOwl:id>

<oboInOwl:is_cyclic rdf:datatype="http://www.w3.org
/2001/XMLSchema#boolean">false</oboInOwl:is_cyclic>

<oboInOwl:is_transitive rdf:datatype="http://www.w3.
org/2001/XMLSchema#boolean">false</
oboInOwl:is_transitive>

<oboInOwl:shorthand rdf:datatype="http://www.w3.org
/2001/XMLSchema#string">has_role</oboInOwl:shorthand
>

<rdfs:label rdf:datatype="http://www.w3.org/2001/
XMLSchema#string">has role</rdfs:label>

5.2 URIs and Labels 99

</owl:ObjectProperty>

Fig. 5.5 Description of has role property (Source: http://www.ontobee.org/)

A graphical visualization of this property is depicted in Figure 5.5.

5.2 URIs and Labels

In the previous examples, we searched the OWL file using labels and URIs. To
standardize the process, we will create two scripts that will convert a label
into a URI and vice-versa. The idea is to perform all the internal ontology
processing using the URIs and in the end convert them to labels, so we can
use them in text processing.

URI of a label

To get the URI of malignant hyperthermia, we can use the following query:

$ xmllint --xpath "//*[local-name()='label' and text()=' ↷

malignant hyperthermia']/../@*[local-name()='about

↷

']" doid.owl

We added the @*[local-name()='about'] to extract the URI specified
as an attribute of that class.

The output will be the name of the attribute and its value:

rdf:about="http://purl.obolibrary.org/obo/DOID_8545"

To extract only the value, we can add the string function to the XPath
query:

http://www.ontobee.org/

100 5 Semantic Processing

$ xmllint --xpath "string(//*[local-name()='label' and ↷

text()='malignant hyperthermia']/../@*[local-name()

↷

='about'])" doid.owl

The output will now be only the attribute value:

http://purl.obolibrary.org/obo/DOID_8545

Unfortunately, the string function returns only one attribute value, even
if many are matched. Nonetheless, we use the string function because we
assume that malignant hyperthermia is an unambiguous label, i.e. only one
class will match. To avoid this limitation we can add the cut command using
the character delimiting the URI, i.e. ".

$ xmllint --xpath "//*[local-name()='label' and text()=' ↷

malignant hyperthermia']/../@*[local-name()='about

↷

']" doid.owl | cut -d\" -f2

Previous versions of xmllint may print all the output in the same line, and
we may need to add extra commands 11.

To get the URI of caffeine is just about the same command:

$ xmllint --xpath "//*[local-name()='label' and text()=' ↷

caffeine']/../@*[local-name()='about']" chebi_lite ↷

.owl | cut -d\" -f2

We can now write a script that receives multiple labels given as standard
input and the OWL file where to find the URIs as argument. Thus, we can
create the script named geturi.sh with the following lines:

1 OWLFILE=$1
2 xargs -I {} xmllint --xpath "//*[local-name()='label'

↷

and text()='{}']/../@*[local-name()='about']"

↷

$OWLFILE | \
3 cut -d\" -f2

Again we cannot forget to save the file in our working directory, and add
the right permissions using chmod as we did with our scripts in the previous
chapters. The xargs command is used to process each line of the standard
input.

Now to execute the script we only need to provide the labels as standard
input:

$ echo 'malignant hyperthermia' | ./geturi.sh doid.owl
$ echo 'caffeine' | ./geturi.sh chebi_lite.owl

The output should be the URIs of those classes:

11 We need to split the result in multiple lines using the tr '"' 'n' command and filter
the lines that contain the http keyword using the grep 'http' command.

5.2 URIs and Labels 101

http://purl.obolibrary.org/obo/DOID_8545
http://purl.obolibrary.org/obo/CHEBI_27732

We can also execute the script using multiple labels, one per line:

$ echo -e 'malignant hyperthermia\nmuscle tissue disease ↷
' | ./geturi.sh doid.owl

$ echo -e 'caffeine\npurine alkaloid\ntrimethylxanthine' ↷

| ./geturi.sh chebi_lite.owl

The output will be a URI for each label:

http://purl.obolibrary.org/obo/DOID_8545
http://purl.obolibrary.org/obo/DOID_66

http://purl.obolibrary.org/obo/CHEBI_27732
http://purl.obolibrary.org/obo/CHEBI_26385
http://purl.obolibrary.org/obo/CHEBI_27134

Label of a URI

To get the label of the disease entry with the identifier 8545, we can also use
the xmllint command:

$ xmllint --xpath "//*[local-name()='Class'][@*[local-

↷

name()='about']='http://purl.obolibrary.org/obo/↷

DOID_8545']/*[local-name()='label']/text()" doid. ↷

owl

We added the @*[local-name()='label'] to select the element within
the class that describes the label.

The output should be the label we were expecting:

malignant hyperthermia

We can do the same to get the label of the compound entry with the iden-
tifier 27732:

$ xmllint --xpath "//*[local-name()='Class'][@*[local-

↷

name()='about']='http://purl.obolibrary.org/obo/ ↷

CHEBI_27732']/*[local-name()='label']/text()"

↷

chebi_lite.owl

Again, the output should be the label we were expecting:

caffeine

We can now write a script that receives multiple URIs given as standard
input and the OWL file where to find the labels. We can create a script named
getlabels.sh with the following lines:

102 5 Semantic Processing

1 OWLFILE=$1
2 xargs -I {} xmllint --xpath "//*[local-name()='Class

↷

'][@*[local-name()='about']='{}']/*[local-name()='

↷

label']/text()" $OWLFILE

The xargs command is used to process each line of the standard input.
Previous versions of xmllint may print all the output in the same line, and
we may need to add extra commands 12.

Now to execute the script we only need to provide the URIs as standard
input:

$ echo 'http://purl.obolibrary.org/obo/DOID_8545' | ./↷

getlabels.sh doid.owl
$ echo 'http://purl.obolibrary.org/obo/CHEBI_27732' | ./ ↷

getlabels.sh chebi_lite.owl

The output should be the labels of those classes:

malignant hyperthermia
caffeine

We can also execute the script with multiple URIs:

$ echo -e 'http://purl.obolibrary.org/obo/DOID_8545\↷

nhttp://purl.obolibrary.org/obo/DOID_66' | ./ ↷

getlabels.sh doid.owl

$ echo -e 'http://purl.obolibrary.org/obo/CHEBI_27732\↷

nhttp://purl.obolibrary.org/obo/CHEBI_26385\nhttp ↷

://purl.obolibrary.org/obo/CHEBI_27134' | ./ ↷

getlabels.sh chebi_lite.owl

The output will be a label for each URI:

malignant hyperthermia
muscle tissue disease

caffeine
purine alkaloid
trimethylxanthine

To test both scripts, we can feed the output of one as the input of the other,
for example:

12 We need to remove the text() function from the XPath. Then we have to split the result
in multiple lines using the tr '<>' 'n' command and filter the lines that contain the
:label keyword or are empty using the grep -v -e ':label' -e '^$' command.
The pattern ^$ means that we cannot have any character between the beginning and the
end of the line, only empty lines are matched.

5.3 Synonyms 103

$ echo -e 'malignant hyperthermia\nmuscle tissue disease ↷

' | ./geturi.sh doid.owl | ./getlabels.sh doid.owl
$ echo -e 'caffeine\npurine alkaloid\ntrimethylxanthine' ↷

| ./geturi.sh chebi_lite.owl | ./getlabels.sh ↷

chebi_lite.owl

The output will be the original input, i.e. the labels given as arguments to the
echo command:

malignant hyperthermia
muscle tissue disease

caffeine
purine alkaloid
trimethylxanthine

Now we can use the URIs as input:

$ echo -e 'http://purl.obolibrary.org/obo/DOID_8545\↷

nhttp://purl.obolibrary.org/obo/DOID_66' | ./ ↷

getlabels.sh doid.owl | ./geturi.sh doid.owl

$ echo -e 'http://purl.obolibrary.org/obo/CHEBI_27732\↷

nhttp://purl.obolibrary.org/obo/CHEBI_26385\nhttp ↷

://purl.obolibrary.org/obo/CHEBI_27134' | ./ ↷

getlabels.sh chebi_lite.owl | ./geturi.sh ↷

chebi_lite.owl

Again the output will be the original input, i.e. the URIs given as argu-
ments to the echo command:

http://purl.obolibrary.org/obo/DOID_8545
http://purl.obolibrary.org/obo/DOID_66

http://purl.obolibrary.org/obo/CHEBI_27732
http://purl.obolibrary.org/obo/CHEBI_26385
http://purl.obolibrary.org/obo/CHEBI_27134

5.3 Synonyms

Concepts are not always mentioned using the same official label. Frequently,
we can find in text alternative labels. This is why some of the classes
also specify alternative labels, such as the ones represented by the element
hasExactSynonym.

104 5 Semantic Processing

For example, to find all the synonyms of a disease, we can use the same
XPath as used before but replacing the keyword label by hasExactSynonym
:

$ xmllint --xpath "//*[local-name()='Class'][@*[local-

↷
name()='about']='http://purl.obolibrary.org/obo/ ↷
DOID_8545']/*[local-name()='hasExactSynonym']" doid↷

.owl

The output will be the two synonyms of malignant hyperthermia:

<oboInOwl:hasExactSynonym rdf:datatype="http://www.w3.
org/2001/XMLSchema#string">anesthesia related
hyperthermia</oboInOwl:hasExactSynonym>

<oboInOwl:hasExactSynonym rdf:datatype="http://www.w3.
org/2001/XMLSchema#string">malignant hyperpyrexia
due to anesthesia</oboInOwl:hasExactSynonym>

We can also get both the primary label and the synonyms. We only need
to add an alternative match to the keyword label:

$ xmllint --xpath "//*[local-name()='Class'][@*[local-

↷

name()='about']='http://purl.obolibrary.org/obo/ ↷

DOID_8545']/*[local-name()='hasExactSynonym' or ↷

local-name()='label']" doid.owl

The output will include now the two synonyms plus the official label:

<oboInOwl:hasExactSynonym rdf:datatype="http://www.w3.
org/2001/XMLSchema#string">anesthesia related
hyperthermia</oboInOwl:hasExactSynonym>

<oboInOwl:hasExactSynonym rdf:datatype="http://www.w3.
org/2001/XMLSchema#string">malignant hyperpyrexia
due to anesthesia</oboInOwl:hasExactSynonym>

<rdfs:label rdf:datatype="http://www.w3.org/2001/
XMLSchema#string">malignant hyperthermia</rdfs:label
>

Thus, we can now update the script getlabels.sh to include synonyms:

1 OWLFILE=$1
2 xargs -I {} xmllint --xpath "//*[local-name()='Class

↷

'][@*[local-name()='about']='{}']/*[local-name()='

↷

hasExactSynonym' or local-name()='hasRelatedSynonym ↷

' or local-name()='label']/text()" $OWLFILE

We can test the script exactly in the same way as before:

$ echo -e 'http://purl.obolibrary.org/obo/DOID_8545' | ↷

./getlabels.sh doid.owl

5.3 Synonyms 105

But now the output will display multiple labels for this class:

anesthesia related hyperthermia
malignant hyperpyrexia due to anesthesia
malignant hyperthermia

URI of synonyms

Since the script now returns alternative labels, we may encounter some prob-
lems if we send the output to the geturi.sh script:

$ echo 'http://purl.obolibrary.org/obo/DOID_8545' | ./↷

getlabels.sh doid.owl | ./geturi.sh doid.owl

The previous command will display XPath warnings for the two synonyms:

XPath set is empty
XPath set is empty
http://purl.obolibrary.org/obo/DOID_8545

If we do not want to know about these mismatches, we can always redirect
them to the null device:

$ echo 'http://purl.obolibrary.org/obo/DOID_8545' | ./↷

getlabels.sh doid.owl | ./geturi.sh doid.owl 2>/dev ↷

/null

However, we can update the script geturi.sh to also include synonyms:

1 OWLFILE=$1
2 xargs -I {} xmllint --xpath "//*[(local-name()='

↷

hasExactSynonym' or local-name()='hasRelatedSynonym ↷

' or local-name()='label') and text()='{}']/../@*[

↷

local-name()='about']" $OWLFILE | \
3 cut -d\" -f2

Now we can execute the same command:

$ echo 'http://purl.obolibrary.org/obo/DOID_8545' | ./ ↷

getlabels.sh doid.owl | ./geturi.sh doid.owl

Every label should now be matched exactly with the same class:

http://purl.obolibrary.org/obo/DOID_8545
http://purl.obolibrary.org/obo/DOID_8545
http://purl.obolibrary.org/obo/DOID_8545

If we want to avoid repetitions, we can add the sort command with the
-u option to the end of each command, as we did in previous chapters:

106 5 Semantic Processing

$ echo 'http://purl.obolibrary.org/obo/DOID_8545' | ./ ↷

getlabels.sh doid.owl | ./geturi.sh doid.owl | sort ↷

-u

The output should now be only one URI:

http://purl.obolibrary.org/obo/DOID_8545

5.4 Parent Classes

Parent classes represent generalizations that may also be relevant to recog-
nize in text. To extract all the parent classes of malignant hyperthermia, we
can use the following XPath query:

$ xmllint --xpath "//*[local-name()='Class'][@*[local-

↷

name()='about']='http://purl.obolibrary.org/obo/↷

DOID_8545']/*[local-name()='subClassOf']/@*[local-

↷

name()='resource']" doid.owl

The first part of the XPath is the same as the above to get the class ele-
ment, then [local-name()='subClassOf'] is used to get the subclass
element, and finally @*[local-name()='resource'] is used to get the
attribute containing its URI.

The output should be the URIs representing the parents of class 8545:

rdf:resource="http://purl.obolibrary.org/obo/
DOID_0050736"

rdf:resource="http://purl.obolibrary.org/obo/DOID_66"

We can also execute the same command for caffeine:

$ xmllint --xpath "//*[local-name()='Class'][@*[local-

↷

name()='about']='http://purl.obolibrary.org/obo/ ↷

CHEBI_27732']/*[local-name()='subClassOf']/@*[local

↷

-name()='resource']" chebi_lite.owl

The output will now include two parents:

rdf:resource="http://purl.obolibrary.org/obo/
CHEBI_26385"

rdf:resource="http://purl.obolibrary.org/obo/
CHEBI_27134"

We should note that we no longer can use the string function, because
ontologies are organized as DAGs using multiple inheritance, i.e. each class
can have multiple parents, and the string function only returns the first
match. To get only the URIs, we can apply the previous technique of using
the tr and grep commands:

5.4 Parent Classes 107

$ xmllint --xpath "//*[local-name()='Class'][@*[local-

↷

name()='about']='http://purl.obolibrary.org/obo/↷

CHEBI_27732']/*[local-name()='subClassOf']/@*[local

↷
-name()='resource']" chebi_lite.owl | cut -d\" -f2

Now the output only contains the URIs:

http://purl.obolibrary.org/obo/CHEBI_26385
http://purl.obolibrary.org/obo/CHEBI_27134

We can now create a script that receives multiple URIs given as standard
input and the OWL file where to find all the parents as argument. The script
named getparents.sh should contain the following lines:

1 OWLFILE=$1
2 xargs -I {} xmllint --xpath "//*[local-name()='Class

↷

'][@*[local-name()='about']='{}']/*[local-name()='

↷

subClassOf']/@*[local-name()='resource']" $OWLFILE ↷

| \
3 cut -d\" -f2

To get the parents of malignant hyperthermia, we will only need to give
the URI as input and the OWL file as argument:

$ echo 'http://purl.obolibrary.org/obo/DOID_8545' | ./ ↷

getparents.sh doid.owl

The output will include the URIs of the two parents:

http://purl.obolibrary.org/obo/DOID_0050736
http://purl.obolibrary.org/obo/DOID_66

Labels of parents

But if we need the labels we can redirect the output to the getlabels.sh script:

$ echo 'http://purl.obolibrary.org/obo/DOID_8545' | ./ ↷

getparents.sh doid.owl | ./getlabels.sh doid.owl

The output will now be the label of the parents of malignant hyperthermia:

autosomal dominant disease
muscle tissue disease

Again, the same can be done with caffeine:

$ echo 'http://purl.obolibrary.org/obo/CHEBI_27732' | ./ ↷

getparents.sh chebi_lite.owl | ./getlabels.sh ↷

chebi_lite.owl

108 5 Semantic Processing

And now the output contains the labels of the parents of caffeine:

purine alkaloid
trimethylxanthine

Related classes

If we are interested in using all the related classes besides the ones that
represent a generalization (subClassOf), we have to change our XPath to:

$ xmllint --xpath "//*[local-name()='Class'][@*[local-

↷

name()='about']='http://purl.obolibrary.org/obo/ ↷

CHEBI_27732']/*[local-name()='subClassOf']//*[local

↷

-name()='someValuesFrom']/@*[local-name()='resource

↷

']" chebi_lite.owl | cut -d\" -f2

We should note that these related classes are in the attribute resource of
someValuesFrom element inside a subClassOf element.

The URIs of the 18 related classes of caffeine are now displayed:

http://purl.obolibrary.org/obo/CHEBI_25435
http://purl.obolibrary.org/obo/CHEBI_35337
http://purl.obolibrary.org/obo/CHEBI_35471
http://purl.obolibrary.org/obo/CHEBI_35498
http://purl.obolibrary.org/obo/CHEBI_35703
http://purl.obolibrary.org/obo/CHEBI_38809
http://purl.obolibrary.org/obo/CHEBI_50218
http://purl.obolibrary.org/obo/CHEBI_50925
http://purl.obolibrary.org/obo/CHEBI_53121
http://purl.obolibrary.org/obo/CHEBI_60809
http://purl.obolibrary.org/obo/CHEBI_64047
http://purl.obolibrary.org/obo/CHEBI_67114
http://purl.obolibrary.org/obo/CHEBI_71232
http://purl.obolibrary.org/obo/CHEBI_75771
http://purl.obolibrary.org/obo/CHEBI_76924
http://purl.obolibrary.org/obo/CHEBI_76946
http://purl.obolibrary.org/obo/CHEBI_78298
http://purl.obolibrary.org/obo/CHEBI_85234

Labels of related classes

To get the labels of these related classes, we only need to add the getlabels.sh
script:

5.5 Ancestors 109

$ xmllint --xpath "//*[local-name()='Class'][@*[local-

↷

name()='about']='http://purl.obolibrary.org/obo/↷

CHEBI_27732']/*[local-name()='subClassOf']//*[local

↷
-name()='someValuesFrom']/@*[local-name()='resource

↷
']" chebi_lite.owl | cut -d\" -f2 | ./getlabels.sh ↷

chebi_lite.owl

The output is now 18 terms that we could use to expand our text process-
ing:

mutagen
central nervous system stimulant
psychotropic drug
diuretic
xenobiotic
ryanodine receptor modulator
EC 3.1.4.* (phosphoric diester hydrolase) inhibitor
EC 2.7.11.1 (non-specific serine/threonine protein

kinase) inhibitor
adenosine A2A receptor antagonist
adjuvant
food additive
ryanodine receptor agonist
adenosine receptor antagonist
mouse metabolite
plant metabolite
fungal metabolite
environmental contaminant
human blood serum metabolite

5.5 Ancestors

Finding all the ancestors of a class includes many chain invocations of the
getparents.sh until we get no matches. We also should avoid relations that
are cyclic, otherwise we will enter in a infinite loop. Thus, for identifying the
ancestors of a class, we will only consider parent relations, i.e. subsumption
relations.

Grandparents

In the previous section we were able to extract the direct parents of a class,
but the parents of these parents also represent generalizations of the orig-

110 5 Semantic Processing

inal class. For example, to get the parents of the parents (grandparents) of
malignant hyperthermia we need to invoke getparents.sh twice:

$ echo 'malignant hyperthermia' | ./geturi.sh doid.owl | ↷
./getparents.sh doid.owl | ./getparents.sh doid. ↷
owl

And we will find the URIs of the grandparents of malignant hyperthermia:

http://purl.obolibrary.org/obo/DOID_0050739
http://purl.obolibrary.org/obo/DOID_0080000

Or to get their labels we can add the getlabels.sh script:

$ echo 'malignant hyperthermia' | ./geturi.sh doid.owl | ↷

./getparents.sh doid.owl | ./getparents.sh doid. ↷

owl | ./getlabels.sh doid.owl

And we find the labels of the grandparents of malignant hyperthermia:

autosomal genetic disease
muscular disease

Root class

However, there are classes that do not have any parent, which are called root
classes. In Figures 5.1 and 5.2, we can see that disease and chemical entity are
root classes of DO and ChEBI ontologies, respectively. As we can see these are
highly generic terms.

To check if it is the root class, we can ask for their parents:

$ echo 'disease' | ./geturi.sh doid.owl | ./getparents. ↷

sh doid.owl
$ echo 'chemical entity' | ./geturi.sh chebi_lite.owl | ↷

./getparents.sh chebi_lite.owl

In both cases, we will get the warning that no matches were found, con-
firming that they are the root class.

XPath set is empty

Recursion

We can now build a script that receives a list of URIs as standard input, and
invokes getparents.sh recursively until it reaches the root class.

The script named getancestors.sh should contain the following lines:

5.5 Ancestors 111

1 OWLFILE=$1
2 CLASSES=$(cat -)
3 [[-z "$CLASSES"]] && exit
4 PARENTS=$(echo "$CLASSES" | ./getparents.sh $OWLFILE | ↷

sort -u)
5 echo "$PARENTS"
6 echo "$PARENTS" | ./getancestors.sh $OWLFILE

The second line of the script saves the standard input in a variable named
CLASSES, because we need to use it twice: i) to check if the input as any
classes or is empty (line 3) and ii) to get the parents of the classes given as
input (line 4). If the input is empty then the script ends, this is the base case
of the recursion 13. This is required so the recursion stops at a given point.
Otherwise, the script would run indefinitely until the user stops it manually.

The fourth line of the script stores the output in a variable named PARENTS
, because we need also to use it twice: i) to output these direct parents (line
5), and ii) to get the ancestors of these parents (line 6). We should note that
we are invoking the getancestors.sh script inside the getancestors.sh, which
defines the recursion step. Since the subsumption relation is acyclic, we ex-
pect that at some time we will reach classes without parents (root classes)
and then the script will end.

We should note that the echo of the variables CLASSES and PARENTS
need to be inside commas, so the newline characters are preserved.

Iteration

Recursion is most of the times computational expensive, but usually it is pos-
sible to replace recursion with iteration to develop a more efficient algorithm.
Explaining iteration and how to refactor a recursive script is out of scope of
this book, nevertheless the following script represents an equivalent way to
get all the ancestors without using recursion:

1 # iteration
2 OWLFILE=$1
3 CLASSES=$(cat -)
4 ANCESTORS=""
5 while [[! -z "$CLASSES"]]
6 do
7 PARENTS=$(echo "$CLASSES" | ./getparents.sh $OWLFILE ↷

| sort -u)
8 ANCESTORS="$ANCESTORS\n$PARENTS"
9 CLASSES=$PARENTS

10 done

13 https://en.wikipedia.org/wiki/Recursion

https://en.wikipedia.org/wiki/Recursion

112 5 Semantic Processing

11 echo -e "$ANCESTORS"

The script uses the while command that basically implements iteration by
repeating a set of commands (lines 6-8) while a given condition is satisfied
(line 4).

To test the recursive script, we can provide as standard input the label
malignant hyperthermia:

$ echo 'http://purl.obolibrary.org/obo/DOID_8545' | ./↷

getancestors.sh doid.owl

The output will be the URI of all its ancestors:

http://purl.obolibrary.org/obo/DOID_0050736
http://purl.obolibrary.org/obo/DOID_66
http://purl.obolibrary.org/obo/DOID_0050739
http://purl.obolibrary.org/obo/DOID_0080000
http://purl.obolibrary.org/obo/DOID_0050177
http://purl.obolibrary.org/obo/DOID_17
http://purl.obolibrary.org/obo/DOID_630
http://purl.obolibrary.org/obo/DOID_7
http://purl.obolibrary.org/obo/DOID_4

We should note that we will still receive the XPath warning when the script
reaches the root class and no parents are found:

XPath set is empty

To remove this warning and just get the labels of the ancestors of malig-
nant hyperthermia, we can redirect the warnings to the null device:

$ echo 'malignant hyperthermia' | ./geturi.sh doid.owl | ↷

./getancestors.sh doid.owl 2>/dev/null | ./ ↷

getlabels.sh doid.owl

The output will now include the name of all ancestors of malignant hyper-
thermia:

autosomal dominant disease
muscle tissue disease
autosomal genetic disease
muscular disease
monogenic disease
musculoskeletal system disease
genetic disease
disease of anatomical entity
disease

We should note that the first two ancestors are the direct parents of malignant
hyperthermia, and the last one is the root class. This happens because the

5.5 Ancestors 113

recursive script prints the parents before invoking itself to find the ancestors
of the direct parents.

We can do the same with caffeine, but be advised that given the higher
number of ancestors in ChEBI we may now have to wait a little longer for the
script to end.

$ echo 'caffeine' | ./geturi.sh chebi_lite.owl | ./ ↷
getancestors.sh chebi_lite.owl | ./getlabels.sh ↷

chebi_lite.owl | sort -u

The results include repeated classes that were found by using different
branches, so that is why we need to add the sort command with the -u
option to eliminate the duplicates.

The script will print the ancestors being found by the script:

alkaloid
aromatic compound
bicyclic compound
carbon group molecular entity
chemical entity
cyclic compound
heteroarene
heterobicyclic compound
heterocyclic compound
heteroorganic entity
heteropolycyclic compound
imidazopyrimidine
main group molecular entity
methylxanthine
molecular entity
molecule
nitrogen molecular entity
organic aromatic compound
organic cyclic compound
organic heterobicyclic compound
organic heterocyclic compound
organic heteropolycyclic compound
organic molecular entity
organic molecule
organonitrogen compound
organonitrogen heterocyclic compound
p-block molecular entity
pnictogen molecular entity
polyatomic entity
polycyclic compound
purine alkaloid
purines

114 5 Semantic Processing

trimethylxanthine

5.6 My Lexicon

Now that we know how to extract all the labels and related classes from an
ontology, we can construct our own lexicon with the list of terms that we
want to recognize in text.

Let us start by creating the file do_8545_lexicon.txt representing our lexi-
con for malignant hyperthermia with all its labels:

$ echo 'malignant hyperthermia' | ./geturi.sh doid.owl | ↷

./getlabels.sh doid.owl > do_8545_lexicon.txt

Ancestors labels

Now we can add to the lexicon all the labels of the ancestors of malignant
hyperthermia by adding the redirection operator:

$ echo 'malignant hyperthermia' | ./geturi.sh doid.owl | ↷

./getancestors.sh doid.owl | ./getlabels.sh doid. ↷

owl >> do_8545_lexicon.txt

We should note that now we use >> and not >, this will append more lines
to the file instead of creating a new file from scratch.

Now we can check the contents of the file do_8545_lexicon.txt to see the
terms we got:

$ cat do_8545_lexicon.txt | sort -u

We should note that we use the sort command with the -u option to elimi-
nate any duplicates that may exist.

We should be able to see the following labels:

anesthesia related hyperthermia
autosomal dominant disease
autosomal genetic disease
disease
disease of anatomical entity
genetic disease
malignant hyperpyrexia due to anesthesia
malignant hyperthermia
monogenic disease
muscle tissue disease
muscular disease
musculoskeletal system disease

5.6 My Lexicon 115

We can also apply the same commands for caffeine to produce its lexicon
in the file chebi_27732_lexicon.txt by adding the redirection operator:

$ echo 'caffeine' | ./geturi.sh chebi_lite.owl | ./ ↷

getlabels.sh chebi_lite.owl > chebi_27732_lexicon. ↷
txt

$ echo 'caffeine' | ./geturi.sh chebi_lite.owl | ./ ↷
getancestors.sh chebi_lite.owl | ./getlabels.sh ↷

chebi_lite.owl >> chebi_27732_lexicon.txt

We should note that it may take a while until it gets all labels.
Now let us check the contents of this new lexicon:

$ cat chebi_27732_lexicon.txt | sort -u

Now we should be able to see that this lexicon is much larger:

alkaloid
aromatic compound
bicyclic compound
caffeine
...
polycyclic compound
purine alkaloid
purines
trimethylxanthine

Merging labels

If we are interested in finding everything related to caffeine or malignant
hyperthermia, we may be interested in merging the two lexicons in a file
named lexicon.txt:

$ cat do_8545_lexicon.txt chebi_27732_lexicon.txt | sort ↷

-u > lexicon.txt

Using this new lexicon, we can recognize any mention in our previous file
named chebi_27732_sentences.txt:

$ grep -w -i -F -f lexicon.txt chebi_27732_sentences.txt

We added the -F option because our lexicon is a list of fixed strings, i.e. does
not include regular expressions. The equivalent long form to the -F option is
--fixed-strings.

We now get more sentences, including some that do not include a direct
mention to caffeine or malignant hyperthermia. For example, the following
sentence was selected because it mentions molecule, which is an ancestor of
caffeine:

116 5 Semantic Processing

The remainder of the molecule is hydrophilic and
presumably constitutes the cytoplasmic domain of the
protein.

Another example is the following sentence, which was selected because it
mentions disease, which is an ancestor of malignant hyperthermia:

Our data suggest that divergent activity profiles may
cause varied disease phenotypes by specific
mutations.

We can also use our script getentities.sh giving this lexicon as argument.
However, since we are not using any regular expressions it would be better
to replace the -E option by -F to the grep command in the script, so the
lexicon is interpreted as list of fixed strings to be matched. Only then we can
execute the script safely:

$./getentities.sh lexicon.txt < chebi_27732_sentences. ↷

txt

Ancestors matched

Besides these two previous examples, we can check if there other ancestors
being matched by using the grep command with the -o option:

$ grep -o -w -F -f lexicon.txt chebi_27732_sentences.txt ↷

| sort -u

We can see that besides the terms caffeine and malignant hyperthermia,
only one ancestor of each one of them was matched, molecule and disease,
respectively:

caffeine
disease
malignant hyperthermia
molecule

This can be explained because our text is somehow limited and because
we are using the official labels and we may be missing acronyms, and simple
variations such as the plural of a term. To cope with this issue, we may use
a stemmer 14, or use all the ancestors besides subsumption. However, if our
lexicon is small is better to do it manually and maybe add some regular
expressions to deal with some of the variations.

14 https://en.wikipedia.org/wiki/Stemming

https://en.wikipedia.org/wiki/Stemming

5.7 Generic Lexicon 117

5.7 Generic Lexicon

Instead of using a customized and limited lexicon, we may be interested in
recognizing any of the diseases represented in the ontology. By recognizing
all the diseases in our caffeine related text, we will be able to find all the
diseases that may be related to caffeine

All labels

To extract all the labels from the disease ontology we can use the same XPath
query used before, but now without restricting it to any URI:

$ xmllint --xpath "//*[local-name()='Class']/*[local-

↷

name()='hasExactSynonym' or local-name()=' ↷

hasRelatedSynonym' or local-name()='label']/text()" ↷

doid.owl

We can create a script named getalllabels.sh, that receives as argument the
OWL file where to find all labels containing the following lines:

1 OWLFILE=$1
2 xmllint --xpath "//*[local-name()='Class']/*[local-

↷

name()='hasExactSynonym' or local-name()=' ↷

hasRelatedSynonym' or local-name()='label']/text()" ↷

$OWLFILE | \
3 sort -u

We should note that this script is similar to the getlabels.sh script without the
xargs, since it does not receive a list of URIs as standard input.

Now we can execute the script to extract all labels from the OWL file:

$./getalllabels.sh doid.owl

The output will contain the full list of diseases:

11-beta-hydroxysteroid dehydrogenase deficiency type 2
11p11.2 deletion
11p partial monosomy syndrome
...
Zoophilia
Zoophobia
zygomycosis

To create the generic lexicon, we can redirect the output to the file dis-
eases.txt:

$./getalllabels.sh doid.owl > diseases.txt

We can check how many labels we got by using the wc command:

118 5 Semantic Processing

$ wc -l diseases.txt

The lexicon contains more than 34 thousand labels.
We can now recognize the lexicon entries in the sentences of the file

chebi_27732_sentences.txt by using the grep command:

$ grep -n -w -E -f diseases.txt chebi_27732_sentences. ↷
txt

However, we will get the following error:

grep: Unmatched) or \)

This error happens because our lexicon contains some special characters also
used by regular expressions, such as the parentheses.

One way to address this issue is to replace the -E option by the -F option,
that treats each lexicon entry as a fixed string to be recognized:

$ grep -n -o -w -F -f diseases.txt chebi_27732_sentences ↷

.txt

The output will show the large list of sentences mentioning diseases:

1:malignant hyperthermia
2:malignant hyperthermia
9:central core disease
10:disease
10:myopathy
...
1092:malignant hyperthermia
1092:central core disease
1103:malignant hyperthermia
1104:malignant hyperthermia
1106:central core disease
1106:myopathy

Problematic entries

Despite using the -F option, the lexicon contains some problematic entries.
Some entries have expressions enclosed by parentheses or brackets, that rep-
resent alternatives or a category:

Post measles encephalitis (disorder)
Glaucomatous atrophy [cupping] of optic disc

Other entries have separation characters, such as commas or colons, to
represent a specialization. For example:

5.7 Generic Lexicon 119

Tapeworm infection: intestinal taenia solum
Tapeworm infection: pork
Pemphigus, Benign Familial
ATR, nondeletion type

A problem is that not all have the same meaning. A comma may also be
part of the term. For example:

46,XY DSD due to LHB deficiency

Other case includes using & to represent an ampersand. For example:

Gonococcal synovitis &/or tenosynovitis

However, most of the times the alternatives are already included in the
lexicon in different lines. For example:

Gonococcal synovitis and tenosynovitis
Gonococcal synovitis or tenosynovitis

As we can see by these examples, it is not trivial to devise rules that fully
solve these issues. Very likely there will be exceptions to any rule we devise
and that we are not aware of.

Special characters frequency

To check the impact of each of these issues, we can count the number of times
they appear in the lexicon:

$ grep -c -F '(' diseases.txt
$ grep -c -F ',' diseases.txt
$ grep -c -F '[' diseases.txt
$ grep -c -F ':' diseases.txt
$ grep -c -F '&' diseases.txt

We will be able to see that parentheses and commas are the most frequent,
with more than one thousand entries.

Completeness

Now let us check if the ATR acronym representing the alpha thalassemia-X-
linked intellectual disability syndrome is in the lexicon:

$ grep -E '^ATR' diseases.txt

All the entries include more terms than only the acronym:

ATR-16 syndrome
ATR, nondeletion type

120 5 Semantic Processing

ATR syndrome, deletion type
ATR syndrome linked to chromosome 16
ATR-X syndrome

Thus, a single ATR mention will not be recognized.
This is problematic if we need to match sentences mentioning that acronym,

such as:

$ echo 'The ATR syndrome is an alpha thalassemia that ↷

has material basis in mutation in the ATRX gene on ↷

Xq21' | grep -w 'ATR'

We will now try to mitigate these issues as simply as we can. We will not
try to solve them completely, but at least address the most obvious cases.

Removing special characters

The first fix we will do, is to remove all the parentheses and brackets by using
the tr command, since they will not be found in the text:

$ tr -d '[](){}' < diseases.txt

Of course, we may lose the shorter labels, such as Post measles encephalitis,
but at least now, the disease Post measles encephalitis disorder will be recog-
nized:

$ tr -d '[](){}' < diseases.txt | grep 'Post measles ↷

encephalitis disorder'

If we really need these alternatives, we would have to create multiple
entries in the lexicon or transform the labels in regular expressions.

Removing extra terms

The second fix is to remove all the text after a separation character, by using
the sed command:

$ tr -d '[](){}' < diseases.txt | sed -E 's/[,:;] .*$//'

We should note that the regular expression enforces a space after the sepa-
ration character to avoid separation characters that are not really separating
two expressions, such as: 46,XY DSD due to LHB deficiency

We can see that now we are able to recognize both ATR and ATR syndrome:

$ tr -d '[](){}' < diseases.txt | sed -E 's/[,:;] .*$//'

↷

| grep -E '^ATR'

5.7 Generic Lexicon 121

Removing extra spaces

The third fix is to remove any leading or trailing spaces of a label:

$ tr -d '[](){}' < diseases.txt | sed -E 's/[,:;] .*$//;
↷

s/^ *//; s/ *$//'

We should note that we added two more replacement expressions to the sed
command by separating them with a semicolon.

We can now update the script getalllabels.sh to include the previous tr
and sed commands:

1 OWLFILE=$1
2 xmllint --xpath "//*[local-name()='Class']/*[local-

↷

name()='hasExactSynonym' or local-name()=' ↷

hasRelatedSynonym' or local-name()='label']/text()" ↷

$OWLFILE | \
3 tr -d '[](){}' | \
4 sed -E 's/[,:;] .*$//; s/^ *//; s/ *$//' | sort -u

And we can now generate a fixed lexicon:

$./getalllabels.sh doid.owl > diseases.txt

We can check again the number of entries:

$ wc -l diseases.txt

We now have a lexicon with more than 13 thousand labels. We have less
entries because our fixes made some entries equal to others already in the
lexicon, and thus the -u option filtered them.

Disease recognition

We can now try to recognize lexicon entries in the sentences of file chebi_27732_sentences.txt:

$ grep -n -o -w -F -f diseases.txt chebi_27732_sentences ↷

.txt

To obtain the list of labels that were recognized, we can use the grep
command:

$ grep -o -w -F -f diseases.txt chebi_27732_sentences. ↷

txt | sort -u

We will get a list of 47 unique labels representing diseases that may be
related to caffeine:

47
Andersen-Tawil syndrome

122 5 Semantic Processing

arrhythmogenic right ventricular cardiomyopathy
arthrogryposis
ARVD2
ataxia telangiectasia
ATR
atrial fibrillation
benign congenital myopathy
cancer
cardiac arrest
cardiomyopathy
catecholaminergic polymorphic ventricular tachycardia
central core disease
CFTD
chorea
congenital myopathy
contractures
deficiency
disease
dystonia
epilepsy
FHL1
hand
hepatitis C
HL
hypercholesterolaemia
hypokalemic periodic paralysis
Hypokalemic periodic paralysis
intellectual disability
long QT syndrome
LQT1
LQT2
LQT3
LQT5
LQT6
malignant hyperthermia
migraine
myopathy
myotonic dystrophy type 1
nemaline myopathy
nemaline rod myopathy
ophthalmoplegia
rod myopathy
scoliosis
syndrome
T cell

5.7 Generic Lexicon 123

The reason why 47 appears is because there is a label 47, XXY:

$ echo '47, XXY' | ./geturi.sh doid.owl

The URI of the disease with that label:

http://purl.obolibrary.org/obo/DOID_1921

Performance

The grep is quite efficient but of course when using large lexicons and texts
we may start to feel some performing issues. Its execution time is propor-
tional to the size of the lexicon, since each term of the lexicon will correspond
to an independent pattern to match. This means that for large lexicons we
may face serious performance issues.

A solution for dealing with large lexicons is to use the inverted recogni-
tion technique [Couto et al., 2017, Couto and Lamurias, 2018]. The inverted
recognition uses the words of the input text as patterns to be matched against
the lexicon file. When the number of words in the input text is much smaller
than the number of terms in the lexicon, grep has much fewer patterns to
match. For example, the inverted recognition technique applied to ChEBI has
shown to be more than 100 times faster than using the standard technique.

Case insensitive

We may use the -i option to perform a case insensitive matching. To check
how many labels are now being recognized we can execute:

$ grep -o -w -F -i -f diseases.txt chebi_27732_sentences ↷

.txt | sort -u | wc -l

We have now 66 labels being recognized.
To check which new labels were recognized, we can compare the results

with and without the -i option:

$ grep -o -w -F -i -f diseases.txt chebi_27732_sentences ↷

.txt | sort -u > diseases_recognized_ignorecase.txt

$ grep -o -w -F -f diseases.txt chebi_27732_sentences.↷

txt | sort -u > diseases_recognized.txt

$ grep -v -F -f diseases_recognized.txt ↷

diseases_recognized_ignorecase.txt

We are now able to see that the new labels are:

124 5 Semantic Processing

all
All
Arrhythmogenic right ventricular dysplasia
can
Catecholaminergic polymorphic ventricular tachycardia
Central Core Disease
defect
Disease
dyskinesia
face
fever
hypotonia
Malignant hyperthermia
Malignant Hyperthermia
March
ORF
total

Some of them are just lower and upper case variations of the same label.
To verify this, we can add the -f option to the sort command:

$ grep -o -w -F -i -f diseases.txt chebi_27732_sentences ↷

.txt | sort -u -f | wc -l

We really have 57 different labels being recognized. The equivalent long form
to the -f option is --ignore-case.

Correct matches

Some important diseases could only be recognized by performing a case in-
sensitive match, such as dyskinesia. This disease was missing because in the
lexicon we had the uppercase case version of the labels, but not the lowercase
version. We can check it by using the grep command:

$ grep -i -E '^dyskinesia$' diseases.txt

The lexicon has only the disease name with the first character in upper-
case:

Dyskinesia

Incorrect matches

However, using a case insensitive match may also create other problems, such
as the acronym CAN for the disease Crouzon syndrome-acanthosis nigricans
syndrome:

5.8 Entity Linking 125

$ echo 'CAN' | ./geturi.sh doid.owl | ./getlabels.sh ↷

doid.owl

By using a case insensitive grep we will recognize the common word CAN
as a disease. For example, we can check how many times CAN is recognized:

$ grep -n -o -w -i -F -f diseases.txt ↷

chebi_27732_sentences.txt | grep -i ':CAN' | wc -l

It is recognized 22 times.
And to see which type of matches they are, we can execute the following

command:

$ grep -o -w -i -F -f diseases.txt chebi_27732_sentences ↷

.txt | grep -i -E '^CAN$' | sort -u

We can verify that the matches are incorrect mentions of the disease
acronym:

can

This means we created at least 22 mismatches by performing a case insensi-
tive match.

5.8 Entity Linking

When we are using a generic lexicon, we may be interested in identifying
what the recognized labels represent. For example, we may not be aware of
what the matched label AD2 represents.

To solve this issue, we can use our script geturi.sh to perform entity link-
ing (aka entity disambiguation, entity mapping, normalization), i.e. find the
classes in the disease ontology that may be represented by the recognized la-
bel. For example, to find what AD2 represents, we can execute the following
command:

$ echo 'AD2' | ./geturi.sh doid.owl

Only one URI:

http://purl.obolibrary.org/obo/DOID_0110035

Now we can retrieve other labels:

$ echo 'http://purl.obolibrary.org/obo/DOID_0110035' | ↷

./getlabels.sh doid.owl

In this case, the result clearly shows that AD2 represents the Alzheimer
disease:

126 5 Semantic Processing

AD2
Alzheimer disease 2, late onset
Alzheimer disease associated with APOE4
Alzheimer disease-2
Alzheimer's disease 2

Modified labels

However, we may not be so lucky with the labels that were modified by our
previous fixes in the lexicon. For example, we can test the case of ATR:

$ echo 'ATR' | ./geturi.sh doid.owl

As expected, we received the warning that no URI was found:

XPath set is empty

An approach to address this issue may involve keeping a track of the original
label in a lexicon using another file.

Ambiguity

We may also have to deal with ambiguity problems where a label may repre-
sent multiple terms. For example, if we check how many classes the acronym
KOS may represent:

$ echo 'KOS' | ./geturi.sh doid.owl

We can see that it may represent two classes:

http://purl.obolibrary.org/obo/DOID_0111456
http://purl.obolibrary.org/obo/DOID_0111712

These two classes represent two distinct diseases, namely Kaufman oculocere-
brofacial syndrome (DOID:0111456) and Kagami-Ogata syndrome (DOID:0111712),
respectively.

We can also obtain their alternative labels by providing the two URI as
standard input to the getlabels.sh script:

$ echo 'http://purl.obolibrary.org/obo/DOID_0111456' | ↷

./getlabels.sh doid.owl

$ echo 'http://purl.obolibrary.org/obo/DOID_0111712' | ↷

./getlabels.sh doid.owl

We will get the following two lists, both containing KOS as expected:

5.8 Entity Linking 127

KOS
blepharophimosis ptosis intellectual disability

syndrome
oculocerebrofacial syndrome, Kaufman type
Kaufman oculocerebrofacial syndrome

KOS
Kagami-Ogata syndrome

If we find a KOS mention in the text, the challenge is to identify which of
the syndromes the mention refers to. For addressing this challenge, we may
have to use advanced entity linking techniques that analyze the context of
the text.

Surrounding entities

An intuitive solution is to select the class closer in terms of meaning to the
other classes mentioned in the surrounding text. This assumes that entities
present in a piece of text are somehow semantically related to each other,
which is normally the case. At least the author assumed some type of relation
between them, otherwise the entities would not be in the same sentence.

Let us consider the following sentence about KOS:

KOS is a syndromic intellectual disability

To identify the diseases in the previous sentence, we can execute the fol-
lowing command:

$ echo 'KOS is a syndromic intellectual disability' | ↷

grep -o -w -F -f diseases.txt

We have a list of labels that can help us decide which is the right class
representing KOS:

KOS
syndromic intellectual disability

To find their URIs we can use the geturi.sh script:

$ echo 'KOS is a syndromic intellectual disability' | ↷

grep -o -w -F -f diseases.txt | ./geturi.sh doid. ↷

owl

The only ambiguity is for KOS that returns two URIs, one representing the
Kaufman oculocerebrofacial syndrome (DOID:0111456) and the other repre-
senting the Kagami-Ogata syndrome (DOID:0111712):

http://purl.obolibrary.org/obo/DOID_0111456
http://purl.obolibrary.org/obo/DOID_0111712
http://purl.obolibrary.org/obo/DOID_0050888

128 5 Semantic Processing

The other URI represents the Syndromic intellectual disability (DOID:0050888).

Fig. 5.6 Semantic similarity between Kaufman oculocerebrofacial syndrome
(DOID:0111456) and Syndromic intellectual disability (DOID:0050888) using the
online tool DiShIn

To decide which of the two URIs we should select, we can measure how
close in meaning they are to the other diseases also found in the text.

Semantic similarity

Semantic similarity measures have been successfully applied to solve these
ambiguity problems [Grego and Couto, 2013]. Semantic similarity quantifies
how close two classes are in terms of semantics encoded in a given ontol-

5.8 Entity Linking 129

Fig. 5.7 Semantic similarity between Kagami-Ogata syndrome (DOID:0111712) and Syn-
dromic intellectual disability (DOID:0050888) using the online tool DiShIn

ogy [Couto and Lamurias, 2019]. Using the web tool Semantic Similarity
Measures using Disjunctive Shared Information (DiShIn) 15, we can calcu-
late the semantic similarity between our recognized classes. For example,
we can calculate the similarity between Kaufman oculocerebrofacial syndrome
(DOID:0111456) and Syndromic intellectual disability (DOID:0050888) (see
Figure 5.6), and the similarity between Kagami-Ogata syndrome (DOID:0111712)
Syndromic intellectual disability (DOID:0050888) (see Figure 5.7).

15 http://labs.rd.ciencias.ulisboa.pt/dishin/

http://labs.rd.ciencias.ulisboa.pt/dishin/

130 5 Semantic Processing

Measures

DiShIn provides the similarity values for three measures, namely Resnik, Lin
and Jiang-Conrath [Resnik, 1995, Lin et al., 1998, Jiang and Conrath, 1997].
The last two measures provide values between 0 and 1, and Jiang-Conrath is
a distance measure that is converted to similarity.

We can see that for all measures Syndromic intellectual disability is much
more similar to Kaufman oculocerebrofacial syndrome than to Kagami-Ogata
syndrome. Moreover, Jiang-Conrath’s measure gives the only similarity value
larger than zero for Kagami-Ogata syndrome, since it is a converted distance
measure. This means that by using semantic similarity we can identify Kauf-
man oculocerebrofacial syndrome as the correct linked entity for the mention
KOS in this text.

DiShIn installation

To automatize this process we can also execute DiShIn as a command line 16,
however we may need to install python (or python3) and SQLite 17.

We can download a minimalist version of DiShin and the latest database
of the Human Disease Ontology:

$ curl -O http://labs.rd.ciencias.ulisboa.pt/dishin/ ↷

dishin.py
$ curl -O http://labs.rd.ciencias.ulisboa.pt/dishin/ssm. ↷

py
$ curl -O http://labs.rd.ciencias.ulisboa.pt/dishin/ ↷

doid202104.db.gz
$ gunzip -N doid202104.db.gz

DiShIn execution

After being installed, we can execute DiShIn by providing the database and
two classes identifiers:

$ python dishin.py doid.db DOID_0111456 DOID_0050888
$ python dishin.py doid.db DOID_0111712 DOID_0050888

The output of the first command will be the semantic similarity values be-
tween LQT1 (DOID:0110644) and Andersen-Tawil syndrome (DOID:0050434):

Resnik DiShIn intrinsic 2.64135297194
Resnik MICA intrinsic 5.28270594387

16 https://github.com/lasigeBioTM/DiShIn
17 apt install python sqlite3 or apt install python3 sqlite3

https://github.com/lasigeBioTM/DiShIn

5.9 Large lexicons 131

Lin DiShIn intrinsic 0.382691348274
Lin MICA intrinsic 0.765382696547
JC DiShIn intrinsic 0.105026743844
JC MICA intrinsic 0.235922590328

The output of the second command will be the semantic similarity values
between LQT1 (DOID:0110644) and X-linked Alport syndrome (DOID:0110034):

Resnik DiShIn intrinsic 0.0
Resnik MICA intrinsic 0.0
Lin DiShIn intrinsic 0.0
Lin MICA intrinsic -0.0
JC DiShIn intrinsic 0.0675488987867
JC MICA intrinsic 0.0675488987867

Learning python 18 and SQL 19 is out of scope of this book, but if we do
not intend to make any modifications the above steps should be quite simple
to execute.

5.9 Large lexicons

The online tool MER is based on a shell script 20, so it can be easily exe-
cuted as a command line to efficiently recognize and link entities using large
lexicons.

MER installation

We can start by downloading the latest compressed file (zip) version, and
extract its contents:

$ curl -O -L https://github.com/lasigeBioTM/MER/archive/ ↷

master.zip
$ unzip master.zip
$ mv MER-master MER

We now have to copy the Human Disease Ontology in to the data folder of
MER, and then enter into the MER folder:

$ cp doid.owl MER/data/
$ cd MER

18 https://www.w3schools.com/python/
19 https://www.w3schools.com/sql/
20 https://github.com/lasigeBioTM/MER

https://www.w3schools.com/python/
https://www.w3schools.com/sql/
https://github.com/lasigeBioTM/MER

132 5 Semantic Processing

Lexicon files

To execute MER, we need first to create the lexicon files:

$ (cd data; ../produce_data_files.sh doid.owl)

This may take a few minutes to run. However, we only need to execute it
once, each time we want to use a new version of the ontology. If we wait, the
output will include the last patterns of each of the lexicon files.

We can check the contents of the created lexicons by using the tail com-
mand:

$ tail data/doid_*

These patterns are created according to the number of words of each term.
The output should be something like this:

==> data/doid_links.tsv <==
ziziphus mauritiana fruit allergy http://purl.

obolibrary.org/obo/DOID_0060507
zlotogora-ogur syndrome http://purl.obolibrary.org/obo/

DOID_0080400
zlotogora-zilberman-tenenbaum syndrome http://purl.

obolibrary.org/obo/DOID_0060773
zollinger-ellison syndrome http://purl.obolibrary.org/

obo/DOID_0050782
zoophilia http://purl.obolibrary.org/obo/DOID_9336
zoophobia http://purl.obolibrary.org/obo/DOID_600
zunich-kaye syndrome http://purl.obolibrary.org/obo/

DOID_0112152
zunich neuroectodermal syndrome http://purl.obolibrary.

org/obo/DOID_0112152
zygodactyly 1 http://purl.obolibrary.org/obo/

DOID_0111820
zygomycosis http://purl.obolibrary.org/obo/DOID_8485

==> data/doid_word1.txt <==
xpid
xpv
xrn
xscid
yaba
yaws
zaspopathy
zoophilia
zoophobia
zygomycosis

5.9 Large lexicons 133

==> data/doid_word2.txt <==
zellweger syndrome
zemuron allergy
zika fever
zinacef allergy
zinsser.cole.engman syndrome
zlotogora.ogur syndrome
zlotogora.zilberman.tenenbaum syndrome
zollinger.ellison syndrome
zunich.kaye syndrome
zygodactyly 1

==> data/doid_words2.txt <==
y.linked monogenic
y.linked sertoli
y.linked spermatogenic
yolk sac
young adult.onset
zeta.associated.protein 70
zika virus
zikv congenital
ziziphus mauritiana
zunich neuroectodermal

==> data/doid_words.txt <==
yolk sac tumour
yolk sac tumour of the cns
young adult.onset dhmn
young adult.onset distal hereditary motor neuropathy
zeta.associated.protein 70 deficiency
zika virus congenital syndrome
zika virus disease
zikv congenital infection
ziziphus mauritiana fruit allergy
zunich neuroectodermal syndrome

MER execution

Now we are ready to execute MER, by providing each sentence from the file
chebi_27732_sentences.txt as argument to its get_entities.sh script.

$ cat ../chebi_27732_sentences.txt | tr -d "'" | xargs - ↷

I {} ./get_entities.sh '{}' doid

134 5 Semantic Processing

We removed single quotes from the text, since they are special characters to
the command line xargs. We should note that this is the get_entities.sh script
inside the MER folder, not the one we created before.

Now we will be able to obtain a large number of matches:

89 111 malignant hyperthermia http://purl.
obolibrary.org/obo/DOID_8545

74 96 malignant hyperthermia http://purl.
obolibrary.org/obo/DOID_8545

157 164 disease http://purl.
obolibrary.org/obo/DOID_4

144 164 central core disease http://purl.
obolibrary.org/obo/DOID_3529

13 20 disease http://purl.
obolibrary.org/obo/DOID_4

47 55 myopathy http://purl.
obolibrary.org/obo/DOID_423

...

The first two numbers represent the start and end position of the match in
the sentence. They are followed by the name of the disease and its URI in the
ontology.

We can also redirect the output to a TSV file named diseases_recognized.tsv:

$ cat ../chebi_27732_sentences.txt | tr -d "'" | xargs - ↷

I {} ./get_entities.sh '{}' doid > ../ ↷

diseases_recognized.tsv

Fig. 5.8 The diseases_recognized.tsv file opened in a spreadsheet application

We can now open the file in our spreadsheet application, such as LibreOf-
fice Calc or Microsoft Excel (see Figure 5.8).

5.10 Further Reading 135

5.10 Further Reading

To know more about biomedical ontologies, the book entitled Introduction
to bio-ontologies is an excellent option, covering most of the ontologies and
computational techniques exploring them [Robinson and Bauer, 2011].

Another approach is to read and watch the materials of the training course
given by Barry Smith 21.

21 http://ontology.buffalo.edu/smith/IntroOntology_Course.html

http://ontology.buffalo.edu/smith/IntroOntology_Course.html

References 137

References

Allen and Owens, 2011. Allen, G. and Owens, M. (2011). The Definitive Guide to SQLite.
Books for professionals by professionals. Apress.

Angermueller et al., 2016. Angermueller, C., Pärnamaa, T., Parts, L., and Stegle, O.
(2016). Deep learning for computational biology. Molecular systems biology, 12(7):878.

Aramaki et al., 2011. Aramaki, E., Maskawa, S., and Morita, M. (2011). Twitter catches
the flu: detecting influenza epidemics using twitter. In Proceedings of the conference
on empirical methods in natural language processing, pages 1568–1576. Association for
Computational Linguistics.

Aras et al., 2014. Aras, H., Hackl-Sommer, R., Schwantner, M., and Sofean, M. (2014).
Applications and challenges of text mining with patents. In IPaMin@ KONVENS.

Ashburner et al., 2000. Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H.,
Cherry, J. M., Davis, A. P., Dolinski, K., Dwight, S. S., Eppig, J. T., et al. (2000). Gene
Ontology: tool for the unification of biology. Nature genetics, 25(1):25.

Baker and Milligan, 2014. Baker, J. and Milligan, I. (2014). Counting and mining research
data with unix. Technical report, The Editorial Board of the Programming Historian.

Barros and Couto, 2016. Barros, M. and Couto, F. M. (2016). Knowledge representa-
tion and management: a linked data perspective. Yearbook of medical informatics,
25(01):178–183.

Blumenthal and Tavenner, 2010. Blumenthal, D. and Tavenner, M. (2010). The “mean-
ingful use” regulation for electronic health records. New England Journal of Medicine,
363(6):501–504.

Borst and Borst, 1997. Borst, W. and Borst, W. (1997). Construction of Engineering On-
tologies for Knowledge Sharing and Reuse. PhD thesis, University of Twente, Netherlands.

Campos et al., 2017. Campos, L., Pedro, V., and Couto, F. (2017). Impact of translation
on named-entity recognition in radiology texts. Database, 2017.

Canese, 2006. Canese, K. (2006). Pubmed celebrates its 10th anniversary. NLM Tech Bull,
352:e5.

Ching et al., 2018. Ching, T., Himmelstein, D. S., Beaulieu-Jones, B. K., Kalinin, A. A., Do,
B. T., Way, G. P., Ferrero, E., Agapow, P.-M., Zietz, M., Hoffman, M. M., et al. (2018).
Opportunities and obstacles for deep learning in biology and medicine. Journal of The
Royal Society Interface, 15(141):20170387.

Cock et al., 2009. Cock, P. J., Antao, T., Chang, J. T., Chapman, B. A., Cox, C. J., Dalke,
A., Friedberg, I., Hamelryck, T., Kauff, F., Wilczynski, B., et al. (2009). Biopython: freely
available python tools for computational molecular biology and bioinformatics. Bioinfor-
matics, 25(11):1422–1423.

Cook et al., 2017. Cook, C. E., Bergman, M. T., Cochrane, G., Apweiler, R., and Birney, E.
(2017). The european bioinformatics institute in 2017: data coordination and integra-
tion. Nucleic acids research, 46(D1):D21–D29.

Coordinators, 2018. Coordinators, N. R. (2018). Database resources of the national center
for biotechnology information. Nucleic acids research, 46(Database issue):D8.

Couto and Lamurias, 2018. Couto, F. and Lamurias, A. (2018). MER: a shell script and
annotation server for minimal named entity recognition and linking. Journal of Chemin-
formatics, 10(58).

Couto and Lamurias, 2019. Couto, F. and Lamurias, A. (2019). Semantic similarity defi-
nition. In Ranganathan, S., Nakai, K., Schönbach, C., and Gribskov, M., editors, Encyclo-
pedia of Bioinformatics and Computational Biology, volume 1. Oxford: Elsevier.

Couto et al., 2017. Couto, F. M., Campos, L. F., and Lamurias, A. (2017). Mer: a minimal
named-entity recognition tagger and annotation server. Proc BioCreative, 5:130–7.

Couto et al., 2006. Couto, F. M., Silva, M. J., Lee, V., Dimmer, E., Camon, E., Apweiler,
R., Kirsch, H., and Rebholz-Schuhmann, D. (2006). GOAnnotator: linking protein go
annotations to evidence text. Journal of biomedical discovery and collaboration, 1(1):19.

138 5 Semantic Processing

Degtyarenko et al., 2007. Degtyarenko, K., De Matos, P., Ennis, M., Hastings, J., Zbinden,
M., McNaught, A., Alcántara, R., Darsow, M., Guedj, M., and Ashburner, M. (2007).
ChEBI: a database and ontology for chemical entities of biological interest. Nucleic acids
research, 36(suppl_1):D344–D350.

Doms and Schroeder, 2005. Doms, A. and Schroeder, M. (2005). GoPubMed: exploring
pubmed with the gene ontology. Nucleic acids research, 33(suppl_2):W783–W786.

Ferreira et al., 2017. Ferreira, J. D., Inácio, B., Salek, R. M., and Couto, F. M. (2017). As-
sessing public metabolomics metadata, towards improving quality. Journal of integrative
bioinformatics, 14(4).

Forta, 2018. Forta, B. (2018). Learning Regular Expressions. Addison-Wesley Professional.
Gentleman et al., 2004. Gentleman, R. C., Carey, V. J., Bates, D. M., Bolstad, B., Dettling,

M., Dudoit, S., Ellis, B., Gautier, L., Ge, Y., Gentry, J., et al. (2004). Bioconductor: open
software development for computational biology and bioinformatics. Genome biology,
5(10):R80.

Grego and Couto, 2013. Grego, T. and Couto, F. M. (2013). Enhancement of chemical
entity identification in text using semantic similarity validation. PloS one, 8(5):e62984.

Gruber, 1993. Gruber, T. R. (1993). A translation approach to portable ontology specifi-
cations. Knowledge acquisition, 5(2):199–220.

Haines, 2017. Haines, N. (2017). Beginning Ubuntu for Windows and Mac Users: Start Your
Journey Into Free and Open Source Software. Apress.

Hersh, 2008. Hersh, W. (2008). Information retrieval: a health and biomedical perspective.
Springer Science & Business Media.

Hey et al., 2009. Hey, T., Tansley, S., Tolle, K. M., et al. (2009). The fourth paradigm:
data-intensive scientific discovery, volume 1. Microsoft research Redmond, WA.

Holzinger and Jurisica, 2014. Holzinger, A. and Jurisica, I. (2014). Knowledge discovery
and data mining in biomedical informatics: The future is in integrative, interactive ma-
chine learning solutions. In Interactive knowledge discovery and data mining in biomedical
informatics, pages 1–18. Springer.

Holzinger et al., 2014. Holzinger, A., Schantl, J., Schroettner, M., Seifert, C., and Verspoor,
K. (2014). Biomedical text mining: state-of-the-art, open problems and future chal-
lenges. In Interactive knowledge discovery and data mining in biomedical informatics,
pages 271–300. Springer.

Hunter and Cohen, 2006. Hunter, L. and Cohen, K. B. (2006). Biomedical language pro-
cessing: what’s beyond pubmed? Molecular cell, 21(5):589–594.

Jensen et al., 2012. Jensen, P. B., Jensen, L. J., and Brunak, S. (2012). Mining electronic
health records: towards better research applications and clinical care. Nature Reviews
Genetics, 13(6):395.

Jiang and Conrath, 1997. Jiang, J. J. and Conrath, D. W. (1997). Semantic similarity
based on corpus statistics and lexical taxonomy. In Proceedings of the 10th Research
on Computational Linguistics International Conference, pages 19–33.

Jurafsky and Martin, 2014. Jurafsky, D. and Martin, J. H. (2014). Speech and language
processing, volume 3. Pearson London.

Kleene, 1951. Kleene, S. C. (1951). Representation of events in nerve nets and finite
automata. Technical report, RAND PROJECT AIR FORCE SANTA MONICA CA.

Krallinger et al., 2017. Krallinger, M., Rabal, O., Lourenço, A., Oyarzabal, J., and Valencia,
A. (2017). Information retrieval and text mining technologies for chemistry. Chemical
reviews, 117(12):7673–7761.

Lamurias and Couto, 2019. Lamurias, A. and Couto, F. (2019). Text mining for bioin-
formatics using biomedical literature. In Ranganathan, S., Nakai, K., Schönbach, C.,
and Gribskov, M., editors, Encyclopedia of Bioinformatics and Computational Biology, vol-
ume 1. Oxford: Elsevier.

Lamurias et al., 2017. Lamurias, A., Ferreira, J. D., Clarke, L. A., and Couto, F. M. (2017).
generating a tolerogenic cell therapy knowledge graph from literature. Frontiers in im-
munology, 8:1656.

References 139

Leonelli, 2016. Leonelli, S. (2016). Data-Centric Biology: A Philosophical Study. University
of Chicago Press.

Lesk, 2014. Lesk, A. (2014). Introduction to bioinformatics. Oxford University Press.
Li et al., 2015. Li, W., Cowley, A., Uludag, M., Gur, T., McWilliam, H., Squizzato, S., Park,

Y. M., Buso, N., and Lopez, R. (2015). The embl-ebi bioinformatics web and program-
matic tools framework. Nucleic acids research, 43(W1):W580–W584.

Lin et al., 1998. Lin, D. et al. (1998). An information-theoretic definition of similarity. In
Icml, volume 98, pages 296–304. Citeseer.

Lu, 2011. Lu, Z. (2011). PubMed and beyond: a survey of web tools for searching biomed-
ical literature. Database, 2011.

McGuinness et al., 2004. McGuinness, D. L., Van Harmelen, F., et al. (2004). OWL web
ontology language overview. W3C recommendation, 10(10):2004.

Nosek et al., 2015. Nosek, B. A., Alter, G., Banks, G. C., Borsboom, D., Bowman, S. D.,
Breckler, S. J., Buck, S., Chambers, C. D., Chin, G., Christensen, G., et al. (2015). Pro-
moting an open research culture. Science, 348(6242):1422–1425.

Ong et al., 2016. Ong, E., Xiang, Z., Zhao, B., Liu, Y., Lin, Y., Zheng, J., Mungall, C., Cour-
tot, M., Ruttenberg, A., and He, Y. (2016). Ontobee: A linked ontology data server to
support ontology term dereferencing, linkage, query and integration. Nucleic acids re-
search, 45(D1):D347–D352.

Rawat and Meena, 2014. Rawat, S. and Meena, S. (2014). Publish or perish: Where are
we heading? Journal of research in medical sciences: the official journal of Isfahan Univer-
sity of Medical Sciences, 19(2):87.

Rebholz-Schuhmann et al., 2005. Rebholz-Schuhmann, D., Kirsch, H., and Couto, F.
(2005). Facts from text—is text mining ready to deliver? PLoS biology, 3(2):e65.

Resnik, 1995. Resnik, P. (1995). Using information content to evaluate semantic similar-
ity in a taxonomy. In Proceedings of the 14th international joint conference on Artificial
intelligence-Volume 1, pages 448–453. Morgan Kaufmann Publishers Inc.

Richardson and Ruby, 2008. Richardson, L. and Ruby, S. (2008). RESTful web services. "
O’Reilly Media, Inc.".

Ritchie, 1971. Ritchie, D. M. (1971). Unix programmer’s manual. Technical report, Tech.
report. Bell.

Robinson and Bauer, 2011. Robinson, P. N. and Bauer, S. (2011). Introduction to bio-
ontologies. Chapman and Hall/CRC.

Schriml et al., 2018. Schriml, L. M., Mitraka, E., Munro, J., Tauber, B., Schor, M., Nickle,
L., Felix, V., Jeng, L., Bearer, C., Lichenstein, R., et al. (2018). Human disease ontology
2018 update: classification, content and workflow expansion. Nucleic acids research.

Schuemie et al., 2004. Schuemie, M. J., Weeber, M., Schijvenaars, B. J., van Mulligen,
E. M., van der Eijk, C. C., Jelier, R., Mons, B., and Kors, J. A. (2004). Distribution of infor-
mation in biomedical abstracts and full-text publications. Bioinformatics, 20(16):2597–
2604.

Shah et al., 2003. Shah, P. K., Perez-Iratxeta, C., Bork, P., and Andrade, M. A. (2003).
Information extraction from full text scientific articles: where are the keywords? BMC
bioinformatics, 4(1):20.

Shotts Jr, 2012. Shotts Jr, W. E. (2012). The Linux command line: a complete introduction.
No Starch Press.

Singhal, 2012. Singhal, A. (2012). Introducing the knowledge graph: things, not strings.
Official google blog, 5.

Smith et al., 2007. Smith, B., Ashburner, M., Rosse, C., Bard, J., Bug, W., Ceusters, W.,
Goldberg, L. J., Eilbeck, K., Ireland, A., Mungall, C. J., et al. (2007). The obo foundry: co-
ordinated evolution of ontologies to support biomedical data integration. Nature biotech-
nology, 25(11):1251.

Spasic et al., 2005. Spasic, I., Ananiadou, S., McNaught, J., and Kumar, A. (2005). Text
mining and ontologies in biomedicine: making sense of raw text. Briefings in bioinfor-
matics, 6(3):239–251.

140 5 Semantic Processing

Stajich et al., 2002. Stajich, J. E., Block, D., Boulez, K., Brenner, S. E., Chervitz, S. A.,
Dagdigian, C., Fuellen, G., Gilbert, J. G., Korf, I., Lapp, H., et al. (2002). The bioperl
toolkit: Perl modules for the life sciences. Genome research, 12(10):1611–1618.

Stephens et al., 2015. Stephens, Z. D., Lee, S. Y., Faghri, F., Campbell, R. H., Zhai, C.,
Efron, M. J., Iyer, R., Schatz, M. C., Sinha, S., and Robinson, G. E. (2015). Big data:
astronomical or genomical? PLoS biology, 13(7):e1002195.

Studer et al., 1998. Studer, R., Benjamins, V. R., Fensel, D., et al. (1998). Knowledge
engineering: principles and methods. Data and knowledge engineering, 25(1):161–198.

Styler IV et al., 2014. Styler IV, W. F., Bethard, S., Finan, S., Palmer, M., Pradhan, S.,
de Groen, P. C., Erickson, B., Miller, T., Lin, C., Savova, G., et al. (2014). Temporal
annotation in the clinical domain. Transactions of the Association for Computational Lin-
guistics, 2:143.

Tomczak et al., 2018. Tomczak, A., Mortensen, J. M., Winnenburg, R., Liu, C., Alessi, D. T.,
Swamy, V., Vallania, F., Lofgren, S., Haynes, W., Shah, N. H., et al. (2018). Interpretation
of biological experiments changes with evolution of the gene ontology and its annota-
tions. Scientific reports, 8(1):5115.

Wei et al., 2013. Wei, C.-H., Kao, H.-Y., and Lu, Z. (2013). PubTator: a web-based text
mining tool for assisting biocuration. Nucleic acids research, 41(W1):W518–W522.

Wu and Fung, 1994. Wu, D. and Fung, P. (1994). Improving chinese tokenization with
linguistic filters on statistical lexical acquisition. In Proc. of the 4th Conference on Applied
Natural Language Processing.

Yeh et al., 2003. Yeh, A., Hirschman, L., and Morgan, A. (2003). Evaluation of text data
mining for database curation: Lessons learned from the KDD challenge cup. Bioinformat-
ics, 19(1):i331–i339.

	Introduction
	Why this book?
	How this book helps Health and Life specialists?
	What is in the book?

	Resources
	Biomedical Text
	What?
	Where?
	How?

	Semantics
	What?
	Where?
	How?

	Further Reading

	Data Retrieval
	Caffeine Example
	Unix shell
	Web Identifiers
	Data Retrieval
	Data Extraction
	Task Repetition
	XML Processing
	Text Retrieval
	Further Reading

	Text Processing
	Pattern Matching
	Regular Expressions
	Alternation
	Multiple characters
	Quantifiers

	Position
	Tokenization
	Entity recognition
	Pattern File
	Relation Extraction
	Further Reading

	Semantic Processing
	Classes
	URIs and Labels
	Synonyms
	Parent Classes
	Ancestors
	My Lexicon
	Generic Lexicon
	Entity Linking
	Large lexicons
	Further Reading
	References

