
Data and Text Processing for Health and Life Sciences
Workbook

Francisco M. Couto
July 12, 2023

http://labs.rd.ciencias.ulisboa.pt/book/

I - Multiple Choice1: 

1. A major problem of the nomenclature used in Health and Life Sciences:
(a) consistency
(b) inconsistency
(c) accuracy
(d) inaccuracy

2. Text files can contain data using a specific format, such as:
(a) TXT, CSV, and XLS
(b) TXT, XLS, and XML
(c) XLS, CSV, and XML
(d) TXT, CSV, and XML

3. One of the most common languages used to specify biomedical ontologies is:
(a) TXT
(b) OWL
(c) XLS
(d) CSV

4. A text format that can store multiple tables in a single file:
(a) CSV
(b) TSV
(c) XML
(d) XLS

5. To add a line to the end of file:
(a)  echo 'line'  >> file.txt 
(b)  echo 'line' > file.txt 
(c)  echo 'line' < file.txt 
(d)  echo 'line' | file.txt 

6. To create a file containing the contents of a web page:
(a)  curl 'https://www.ebi.ac.uk/...' 
(b)  curl 'https://www.ebi.ac.uk/...' > file.txt 
(c)  curl 'https://www.ebi.ac.uk/...' < file.txt 
(d)  curl 'https://www.ebi.ac.uk/...' | file.txt 

7. To select only the lines of a XML file that specify the organism as Homo sapiens:
(a)  cat '<name type="scientific">Homo sapiens</name>' file.xml
(b)  sed '<name type="scientific">Homo sapiens</name>' file.xml 
(c)  grep '<name type="scientific">Homo sapiens</name>' file.xml
(d)  xmllint --xpath '<name type="scientific">Homo sapiens</name>' file.xml 

8. To obtain the species name of a protein in its XML file:
(a)  grep '<name type="scientific">Homo sapiens</name>' P21817_entry.xml
(b)  xmllint --xpath '//name/text()' P21817_entry.xml
(c)  xmllint --xpath '//type/scientific/text()' P21817_entry.xml
(d)  xmllint --xpath '//name[@type="scientific"]/text()' P21817_entry.xml 

9. Which sequence matches the regular expression A?T*G+C:
(a)  GGGC  
(b)  TTTG 

1 The answers are at the end of this workbook

http://labs.rd.ciencias.ulisboa.pt/book/


(c)  AAAT 
(d)  ATTC

10. Which sequence matches the regular expression ^A[^T]+G.C:
(a)  TTGGC  
(b)  ATGGC 
(c)  AGGCC
(d)  AGCCC 

II - Output Identification: 

1. Consider a file test.txt with the following three lines:
Caffeine is a compound.
I like caffeine drinks. 
My favourite is the PowerCaffeine brand

(a) and the execution of the following two commands:
./reversemyfile.sh test.txt > test2.txt
tr -d 'a' < test2.txt > test3.txt
How many a‘s can we find in the first line of each file (test.txt, test2.txt and test3.txt)?

(b) and the execution of the following three commands:
grep 'is' test.txt > test1.txt
grep 'like' test.txt > test2.txt
grep -e 'is' -e 'like' test.txt > test3.txt
How many lines has each file (test1.txt, test2.txt and test3.txt)?

(c) and the execution of the following four commands:
echo -e 'is\nlike' > terms.txt
cat test.txt  | xargs -I {} grep {} terms.txt > test1.txt
cat terms.txt | xargs -I {} grep {} terms.txt > test2.txt
cat terms.txt | xargs -I {} grep {} test.txt  > test3.txt
How many lines has each file (test1.txt, test2.txt and test3.txt)?

2. Consider a file test.txt with the following two lines:
Caffeine is a compound.
caffeine drinks are great.

Identify the output of the following command lines:
(a) sed -E 's/^c/\n/'   test.txt | wc -l
(b) sed -E 's/^c/\n/i'  test.txt | wc -l
(c) sed -E 's/[^c][ao]/\n/g'  test.txt | wc -l
(d) sed -E 's/[^c][ao]/\n/ig' test.txt | wc -l

(e) sed -E 's/c[^ ]+/\n/' test.txt | wc -l
(f) sed -E 's/c[^ ]+/\n/i' test.txt | wc -l
(g) sed -E 's/c[^ ]+/\n/ig' test.txt | wc -l
(h) sed -E 's/[ca][^ ]+/\n/ig' test.txt | wc -l

3. Consider a file test.txt with the following three lines:
Caffeine is a compound.
I like caffeine drinks. 
My favourite is the PowerCaffeine brand.

Identify the output of the following command lines:
(a) grep -c 'caffeine' test.txt
(b) grep -c -e 'caffeine' -e 'Caffeine' test.txt
(c) grep -c -i 'caffeine' test.txt
(d) grep -c -i -w 'caffeine' test.txt



(e) grep -c -E 'caffeine' test.txt
(f) grep -c -E '(c|C)affeine' test.txt
(g) grep -c -E '.affeine' test.txt
(h) grep -c -E '[^c]affeine' test.txt

(i) sed -E 's/c/\n/'   test.txt | wc -l
(j) sed -E 's/c/\n/i'  test.txt | wc -l
(k) sed -E 's/c/\n/g'  test.txt | wc -l
(l) sed -E 's/c/\n/ig' test.txt | wc -l

4. Consider a file sequence.txt with the following two lines:
ATAACGCTAG
AAACCCTTAG

Identify the output of the following command lines:
(a) grep -b -o -w -E 'AAA*' sequence.txt
(b) grep -b -o -E '^AAA*' sequence.txt
(c) grep -b -o -E 'AAA*$' sequence.txt
(d) grep -b -o -E 'AAA*' sequence.txt

5. Consider a file test.xml with the following lines:
<gene>

<reference id="0"  date="2010"> 
first reference 

</reference>
<proteins>

<reference id="1"  date="2011">  
second reference

</reference>
<reference id="2"  date="2012"> 

third reference
</reference>

</proteins>
</gene>

Identify the output of the following command lines:
(a) xmllint --xpath '/proteins/reference[1]/@id' test.xml
(b) xmllint --xpath '//proteins/reference[1]/@id' test.xml
(c) xmllint --xpath '//proteins/reference[2]/@date' test.xml
(d) xmllint --xpath '//proteins/reference[2]/text()' test.xml

6. Consider a file test.owl with the following lines:
<Class about="D3">
   <subClassOf resource="D1"/>
   <subClassOf resource="D2"/>
   <hasSynonym>MHN</hasSynonym>
   <hasSynonym>MHS</hasSynonym>
   <hasSynonym>MHE</hasSynonym>
   <label>MHX</label>
</Class>

Identify the output of the following command lines:
(a) xmllint --xpath '//Class[@about="D3"]' test.owl | 

grep -c 'MHN'
(b) xmllint --xpath '//subClassOf[@resource="D1"]/..' test.owl | 

grep -c 'MHN'
(c) xmllint --xpath '//subClassOf[@resource="D1"]/../hasSynonym' test.owl |

grep -c 'MHN'



(d) xmllint --xpath   '//subClassOf[@resource="D1"]/../label' test.owl |   
grep -c 'MHN'

(e) xmllint --xpath '//Class[@about="D3"]' test.owl | 
grep -o -E 'MH.' | wc -l

(f) xmllint --xpath '//subClassOf[@resource="D1"]/..' test.owl |
grep -o -E 'MH.' | wc -l

(g) xmllint --xpath '//subClassOf[@resource="D1"]/../hasSynonym' test.owl |
grep -o -E 'MH.' | wc -l

(h) xmllint --xpath   '//subClassOf[@resource="D1"]/../label' test.owl |
grep -o -E 'MH.' | wc -l

7. Consider a file test.owl with the following lines:
<Classes>

<Class about="D1">
   <label>L1</label>
</Class>
<Class about="D2">
   <subClassOf resource="D1"/>
   <label>L2</label>
</Class>
<Class about="D3">
   <subClassOf resource="D2"/>
   <label>L3</label>
</Class>

</Classes>

Identify the output of the following command lines:
(a) echo "D2" | ./getparents.sh   test.owl | wc -l
(b) echo "D2" | ./getancestors.sh test.owl | wc -l
(c) echo "D3" | ./getparents.sh   test.owl | wc -l
(d) echo "D3" | ./getancestors.sh test.owl | wc -l

8. Consider a file lexicon.txt with the following two lines:
measles encephalitis
measles encephalitis, disorder
measles (encephalitis)
(Post) measles encephalitis, disorder

Identify the output of the following command lines:
(a) cat lexicon.txt | 

grep -c -E '^measles encephalitis$'
(b) tr -d '()' < lexicon.txt | 

grep -c -E '^measles encephalitis$'
(c) sed -E 's/, .*$//'  < lexicon.txt | 

grep -c -E '^measles encephalitis$'
(d) sed -E 's/, .*$//'  < lexicon.txt | tr -d '()' | 
 grep -c -E '^measles encephalitis$'

III – Script Modification: 

1. Consider this version of the getpublications.sh script:
ID=$1
rm -f chebi\_$ID\_*.rdf # Removes any previous files 
grep -l '<name type="scientific">Homo sapiens</name>' chebi\_$ID\_*.xml | \
xargs -I {} grep '<dbReference type="PubMed"' {} | \
cut -d” -f4 | sort -u | \



xargs -I {} curl 'https://www.uniprot.org/citations/{}.rdf' -o chebi\_$ID\_{}.rdf

Identify which line needs to be replaced and the new command lines to replace it, 
so the script: 
(a) saves all the publication links in a file named links.txt 
(b) uses a xpath query to extract the PubMed identifiers

2. Consider this version of the getpublications.sh script:
OWLFILE=$1
xmllint --xpath "//*[local-name()='Class']/*[local-name()='hasExactSynonym' 
         or local-name()='hasRelatedSynonym' or local-name()='label']" $OWLFILE | \
tr '<>' '\n' | \
grep -v -e ':label' -e ':hasExactSynonym' -e 'hasRelatedSynonym' -e '^$' | \
tr -d '[](){}' | \
sed -E 's/[,:;] .*$//; s/^ *//; s/ *$//' | \
sort -u

Identify which line needs to be replaced and the new command lines to replace it, 
so the script: 
(a) removes also all the numbers in the beginning of a label
(b) removes the numbers that follow the words disease or syndrome

3. Consider this version of the getproteins.sh script:
ID=$1
rm -f chebi\_multiple\_*.xml
curl -s "https://www.ebi.ac.uk/chebi/viewDbAutoXrefs.do?d-1169080-e=1&6578706f7274=1& 
         chebiId=$ID&dbName=UniProt" | \
grep -e 'CC - MISCELLANEOUS' -e 'CC - DISRUPTION PHENOTYPE' -e 'CC - DISEASE' | \
cut -d, -f1 | \
xargs -I {} curl 'https://www.uniprot.org/uniprot/{}.xml' -o chebi\_multiple\_{}.xml

Identify which lines needs to be replaced and the new command lines to replace it, 
so the script: 
(a) saves all the protein links in a file named proteins.txt 
(b) receives as argument a filename containing a list of ChEBI identifiers (one per line)

IV - Essay: 

1. Which of the other four metals are more and less similar
to platinum?

2. Both grep and cut were used as data filters, why we used these two commands instead of 
just one of them?

3. Both grep and xmllint were used as data filters, why we used these two commands instead 
of just one of them?

4. Both regular expressions and xpath queries were used for data selection, why we used these 
two techniques instead of just one of them? 

5. Both regular expressions and exact match queries were used for text selection, why we used 
these two techniques instead of just one of them?  Provide an example.



Answers

I 
1-b, 2-d, 3-b, 4-c, 5-a, 6-b, 7-c, 8-d, 9-a, 10-c

II
1. (a) 2, 3, 0 (b) 2, 1, 3, (c), 0,2,3
2. (a-h) 3, 4, 7, 6, 4, 4, 5, 7
3. (a-l) 1, 3, 3, 2, 1, 3, 3, 2, 5, 6, 5, 7
4. -, 11:AAA, -, 2:AA 11:AAA
5. (a) XPath set is empty, (b) id="1", (c) date="2012", (d) third reference
6. (a-h) 1, 1, 1, 0, 4, 4, 3, 1
7. (a-d) 1, 1, 1, 2
8. (a-d) 1, 2, 2, 3

III
1(a) Line 6 needs to be replaced by:
xargs -I {} echo 'https://www.uniprot.org/citations/{}.rdf' > links.txt

1(b) Line 4 needs to be replaced by:
xargs -I {}  xmllint --xpath '//dbReference[@type="PubMed"]/@id'

      chebi_27732_P21817_entry.xml | tr ' ' '\n' | tr 'id' '""'  | \

2(a) Line 6 needs to be replaced by 
sed -E 's/[,:;] .*$//; s/^ *//; s/ *$//'; s/^[0-9]+//' | \

2(b) Line 6 needs to be replaced by 
sed -E 's/[,:;] .*$//; s/^ *//; s/ *$//';  
    's/(disease|syndrome) [0-9]+/\1/' | \

3(a) Line 6 needs to be replaced by 
xargs -I {} echo 'https://www.uniprot.org/uniprot/{}.xml' > proteins.txt

3(b) Line 3 needs to be replaced by 
cat $ID | xargs -I {} curl -s "https://www.ebi.ac.uk/chebi/
    viewDbAutoXrefs.do?d-1169080-e=1&6578706f7274=1&chebiId={}&
    dbName=UniProt" | \

IV  
1. more similar is palladium, and less similar is copper
2. grep was used to filter lines (rows), while cut was used to filter data elements (columns) in 

the lines
3. grep was used to filter lines (rows), while xmllint for filtering XML data elements that may 

not be represented in a single line 
4. Regular expressions were used in grep to match lines (rows) of text file, while xpath queries 

were used in xmllint to match data elements in a XML file.
5. Regular expressions enabled us to match text with some variations, while exact match only 

matches text that is completely equal to the given query. For example, the query A.C 
matches ABC and A.C when used as a regular expression, but only matches A.C when used 
as an exact match. 


